Structure Decomposition and Homomorphism Identification of Planar Variable Topology Mechanisms

2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Chin-Hsing Kuo ◽  
Lung-Yu Chang

Structural analysis of variable topology mechanisms (VTMs) is the leading task when studying the topological variability of mechanisms. Of several major concerns, structure decomposition and homomorphism identification are two dominating issues for the structural analysis of VTMs. This paper presents a systematic computational approach for the structure decomposition and homomorphism identification of planar VTMs. Along with the proposed method, a constraint matrix representation, that records the potential motion constraints and the topological structures of a VTM, is introduced for serving as the basis of the approach. In addition, a new index, namely, degrees of homomorphism (DOHs), is suggested for quantifying the topological similarity among VTMs. For illustration, an automatic steel clamping and sawing mechanism and a group of mechanisms with similar topologies are adopted, from which their structure decomposition and homomorphism identification are carried out. As shown, the method is both symbolically readable and computationally considerable. The result is helpful for the automated structural analysis and synthesis of variable topology mechanisms.

1973 ◽  
Vol 95 (2) ◽  
pp. 525-532 ◽  
Author(s):  
M. Huang ◽  
A. H. Soni

Using graph theory and Polya’s theory of counting, the present paper performs structural synthesis and analysis of planar and three-dimensional kinematic chains. The Section 2 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of planar kinematic chains with kinematic elements such as revolute pairs, cam pairs, springs, belt-pulley, piston-cylinder, and gears. The theory developed is applied to enumerate eight-link kinematic chains with these kinematic elements. The Section 3 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of multi-loop spatial kinematic chains with higher and lower kinematic pairs. The theory developed is applied to enumerate all possible two-loop kinematic chains with or without general constraints.


2008 ◽  
Vol 55 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Hideki Okada ◽  
Naoki Kawazoe ◽  
Akira Yamamori ◽  
Shuichi Onodera ◽  
Norio Shiomi

Robotica ◽  
2015 ◽  
Vol 34 (11) ◽  
pp. 2467-2485 ◽  
Author(s):  
Wen-ao Cao ◽  
Huafeng Ding ◽  
Ziming Chen ◽  
Shipei Zhao

SUMMARYThis paper presents a systematic method for dealing with mobility analysis and structural synthesis of a class of important spatial mechanisms with coupling chains, which involve more complex coupling relations than spatial parallel mechanisms. First, an approach to the establishment of the motion screw equation of the class of mechanisms is derived. Then, a general methodology for mobility analysis along with detection of rigid substructures is proposed based on the motion screw equation. Third, the principle of structural synthesis of the class of mechanisms is established on the basis of the method of mobility analysis. Finally, some novel spatial mechanisms with coupling chains are synthesized, illustrating the effectiveness of the method. The study of the paper will benefit structural analysis and synthesis of more complex spatial mechanisms with coupling chains.


Sign in / Sign up

Export Citation Format

Share Document