Mobility analysis and structural synthesis of a class of spatial mechanisms with coupling chains

Robotica ◽  
2015 ◽  
Vol 34 (11) ◽  
pp. 2467-2485 ◽  
Author(s):  
Wen-ao Cao ◽  
Huafeng Ding ◽  
Ziming Chen ◽  
Shipei Zhao

SUMMARYThis paper presents a systematic method for dealing with mobility analysis and structural synthesis of a class of important spatial mechanisms with coupling chains, which involve more complex coupling relations than spatial parallel mechanisms. First, an approach to the establishment of the motion screw equation of the class of mechanisms is derived. Then, a general methodology for mobility analysis along with detection of rigid substructures is proposed based on the motion screw equation. Third, the principle of structural synthesis of the class of mechanisms is established on the basis of the method of mobility analysis. Finally, some novel spatial mechanisms with coupling chains are synthesized, illustrating the effectiveness of the method. The study of the paper will benefit structural analysis and synthesis of more complex spatial mechanisms with coupling chains.

1973 ◽  
Vol 95 (2) ◽  
pp. 525-532 ◽  
Author(s):  
M. Huang ◽  
A. H. Soni

Using graph theory and Polya’s theory of counting, the present paper performs structural synthesis and analysis of planar and three-dimensional kinematic chains. The Section 2 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of planar kinematic chains with kinematic elements such as revolute pairs, cam pairs, springs, belt-pulley, piston-cylinder, and gears. The theory developed is applied to enumerate eight-link kinematic chains with these kinematic elements. The Section 3 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of multi-loop spatial kinematic chains with higher and lower kinematic pairs. The theory developed is applied to enumerate all possible two-loop kinematic chains with or without general constraints.


Author(s):  
Ting-Li Yang ◽  
Fang-Hua Yao ◽  
Ming Zhang

Abstract This paper presents a systematical comparative study of various modular methods based on the different module types: basic kinematic chains (BKCs), single opened chains (SOCs), loops (or a tree and co-tree), links-joints, etc. for analysis and synthesis of structure, kinematics and dynamics of planar linkages. The basic idea is that any linkage can be divided into (or built up by) some modular components in sequence, and based on the component constraints and network entirty constraints of the linkage, the unified modular approaches have been used for analysis and synthesis. In systematical comparative study, the main issues of a modular method have been discussed, such as: the topological characteristics revealed via different module types; the dimension of a set of kinematic equations; the automated generation and solution of kinematic equations; the dimension and automated generation of dynamical equations, and computation complexity for generating and solving dynamical equation; the automated generation of structural analysis and type synthesis; the generation of kinematic synthesis equations etc.. This paper gives a summary of the use of modular techniques for analyzing and synthesizing planar linkages in the recently thirty years. This comparative study includes two parts: Part I-modular structural analysis and modular kinematic analysis; Part II-modular dynamic analysis, modular structural synthesis and modular kinematic synthesis. This paper is the second part.


Author(s):  
Yundou Xu ◽  
Jiantao Yao ◽  
Yongsheng Zhao

In this study, a systematic method is proposed to synthesize the parallel and hybrid serial–parallel mechanisms for the forging manipulators based on the screw theory. First, several typical configurations of five-degrees-of-freedom parallel mechanism for the forging manipulators are synthesized, and they are all non-overconstrained mechanisms. Then, two kinds of hybrid serial–parallel mechanisms for the forging manipulators with the advantages of motion decoupling are constructed, which are also not overconstrained. The configurations obtained in this study would provide more type selection for the heavy-duty forging manipulators in engineering.


2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Thierry Laliberté ◽  
Clément Gosselin

The concept of polyhedra with articulated faces is investigated in this paper. Polyhedra with articulated faces can be described as polyhedral frameworks, whose faces are constrained to remain planar. A mechanical arrangement based on a single type of component is proposed for the construction of the polyhedra. Then, the determination of their infinitesimal and full-cycle mobility is addressed. In some cases, they are rigid structures while in others they are articulated mechanisms. Finally, examples are given, using simulation and physical models, and several new families of articulated polyhedra are synthesized.


Author(s):  
Constantinos Mavroidis ◽  
Bernard Roth

Abstract This paper presents a new systematic method for dealing with overconstrained mechanisms, and describes how the method was used to discover new overconstrained mechanisms and correct errors in several previously published overconstraint conditions. With this one method we are able to verify all previously known overconstrained mechanisms. In addition, this method yields the input-output equations of any single-loop overconstrained mechanism. For all new and corrected overconstrained mechanisms, numerical examples of input-output curves are presented.


Sign in / Sign up

Export Citation Format

Share Document