Large Eddy Simulation of Vaporizing Sprays Considering Multi-Injection Averaging and Grid-Convergent Mesh Resolution

Author(s):  
P. K. Senecal ◽  
E. Pomraning ◽  
Q. Xue ◽  
S. Som ◽  
S. Banerjee ◽  
...  

A state-of-the-art spray modeling methodology, recently presented by Senecal et al. (2012, “Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” Proceedings of the ASME 2012 Internal Combustion Engine Division Fall Technical Conference, Vancouver, Canada, Paper No. ICEF2012-92043; 2013 “An Investigation of Grid Convergence for Spray Simulations using an LES Turbulence Model,” Paper No. SAE 2013-01-1083) is applied to large eddy simulations (LES) of vaporizing sprays. Simulations of noncombusting Spray A (n-dodecane fuel) from the engine combustion network are performed. An adaptive mesh refinement (AMR) cell size of 0.0625 mm is utilized based on the accuracy/runtime tradeoff demonstrated by Senecal et al. (2013, “An Investigation of Grid Convergence for Spray Simulations using an LES Turbulence Model,” Paper No. SAE 2013-01-1083). In that work, it was shown that grid convergence of key parameters for nonevaporating and evaporating sprays was achieved for cell sizes between 0.0625 and 0.125 mm using the dynamic structure LES model. The current work presents an extended and more thorough investigation of Spray A using multidimensional spray modeling and the dynamic structure LES model. Twenty different realizations are simulated by changing the random number seed used in the spray submodels. Multirealization (ensemble) averaging is shown to be necessary when comparing to local spray measurements of quantities such as mixture fraction and gas-phase velocity. Through a detailed analysis, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of diesel sprays. Finally, the effect of a spray primary breakup model constant on the results is assessed.

Author(s):  
P. K. Senecal ◽  
E. Pomraning ◽  
Q. Xue ◽  
S. Som ◽  
S. Banerjee ◽  
...  

A state-of-the-art spray modeling methodology, recently presented by Senecal et al. [1, 2], is applied to Large Eddy Simulations (LES) of vaporizing sprays. Simulations of non-combusting Spray A (n-dodecane fuel) from the Engine Combustion Network are performed. An Adaptive Mesh Refinement (AMR) cell size of 0.0625 mm is utilized based on the accuracy/runtime tradeoff demonstrated by Senecal et al. [2]. In that work it was shown that grid convergence of key parameters for non-evaporating and evaporating sprays was achieved for cell sizes between 0.0625 and 0.125 mm using the Dynamic Structure LES model. The current work presents an extended and more thorough investigation of Spray A using multi-dimensional spray modeling and the Dynamic Structure LES model. Twenty different realizations are simulated by changing the random number seed used in the spray sub-models. Multi-realization (ensemble) averaging is shown to be necessary when comparing to local spray measurements of quantities such as mixture fraction and gas-phase velocity. Through a detailed analysis, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of Diesel sprays. Finally, the effect of a spray primary breakup model constant on the results is assessed.


Author(s):  
P. K. Senecal ◽  
S. Mitra ◽  
E. Pomraning ◽  
Q. Xue ◽  
S. Som ◽  
...  

A state-of-the-art spray modeling methodology, recently presented by Senecal et al. [1, 2, 3], is applied to Large Eddy Simulations (LES) of vaporizing sprays. Simulations of non-combusting Spray H (n-heptane fuel) from the Engine Combustion Network are performed. Adaptive Mesh Refinement (AMR) cell sizes of 0.03125 mm to 0.25 mm are utilized to further demonstrate grid convergence of the Dynamic Structure LES model for diesel sprays. Twenty-eight different realizations are simulated by changing the random number seed used in the spray submodels. Multi-realization (ensemble) averaging, which has been shown to be necessary when comparing to local spray measurements, is performed. Global quantities such as liquid and vapor penetration are compared, as well as local mean mixture fraction and mixture fraction standard deviation. The results suggest that the current model does a reasonable job predicting the major features of the n-heptane spray when appropriate grid resolution is utilized.


2020 ◽  
pp. 146808741989646
Author(s):  
Federico Rulli ◽  
Alessio Barbato ◽  
Stefano Fontanesi ◽  
Alessandro d’Adamo

Computational fluid dynamics has become a fundamental tool for the design and development of internal combustion engines. The meshing strategy plays a central role in the computational efficiency, in the management of the moving components of the engine and in the accuracy of results. The overset mesh approach, usually referred to also as chimera grid or composite grid, was rarely applied to the simulation of internal combustion engines, mainly because of the difficulty in adapting the technique to the specific complexities of internal combustion engine flows. The article demonstrates the feasibility and the effectiveness of the overset mesh technique application to internal combustion engines, thanks to a purposely designed meshing approach. In particular, the technique is used to analyze the cycle-to-cycle variability of internal combustion engine flows using large eddy simulation. Fifty large eddy simulation cycles are performed on the well-known TCC-III engine in motored condition. Results are analyzed in terms of tumble center trajectory and using proper orthogonal decomposition to objectively characterize the spatial and temporal evolution of turbulent flow field in internal combustion engines. In particular, an original decomposition method previously applied by the authors to the TCC-III measured flow fields is here extended to computational fluid dynamics results.


2021 ◽  
Author(s):  
Peetak Mitra ◽  
Majid Haghshenas ◽  
Niccolò Dal Santo ◽  
Mateus Dias Ribeiro ◽  
Shounak Mitra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document