combustion engines
Recently Published Documents


TOTAL DOCUMENTS

4123
(FIVE YEARS 978)

H-INDEX

66
(FIVE YEARS 11)

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 123029
Author(s):  
Ponnya Hlaing ◽  
Manuel Echeverri Marquez ◽  
Emre Cenker ◽  
Hong G. Im ◽  
Bengt Johansson ◽  
...  
Keyword(s):  

2022 ◽  
pp. 1-35
Author(s):  
Linyan Wang ◽  
Guangyun Chen ◽  
Jimi Tjong ◽  
Ming Zheng

Abstract Due to the high transiency and high voltage characteristics of spark ignition, precise measurements are in demand for efficient ignition in future clean combustion engines. The practical challenges of SI systems arise as the gaseous substances vary extensively in density, flow, and temperature. In this paper, a typical transistor coil ignition system with a current management module maintains the transient discharge condition for more credible measurements. Suitable apparatus with FPGA multi-task control systems are established to effectively control and stabilize the discharge current level and duration. The electrical waveforms and spark plasma patterns are correlated, via concurrent electric probing and shadowgraph imaging, under quiescent and flow conditions. The multi-task FPGA provides synchronization of ignition control and data acquisition. The empirical setup and analyzing methods of this work provide essential guidance for facilitating broader innovations in spark ignition, and for advancing the clean and efficient combustion in automotive and aviation engines.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 339
Author(s):  
Wojciech Koznowski ◽  
Andrzej Łebkowski

The trend to replace internal combustion engines with electric zero-emission drives, visible in the automotive industry, also exists in the shipbuilding industry. In contrary to land vehicles, the requirements for the electric propulsion system of tugs are much greater, which combined with the limited space and energy on board, makes any amount of energy valuable. Strategic changes in the policy of many countries, such as the “Fit for 55” package, introduce plans to significantly reduce CO2 emissions, which favors the development of alternative drives and their introduction to new areas of operation. This article presents that it is possible to reduce the amount of energy an electric tug spends for movement by applying the Particle Swarm Optimization method to modify the shape of its hull. A statistical analysis of public data was performed to determine the speed profiles of actual port tugs. The Van Oortmerssen method was used to determine the hull resistances of the proposed tug and the impact of the hull shape modification sets on reducing these resistances. Based on the six obtained speed profiles, it was determined that one of the tested variants of modifications made it possible to reduce energy consumption on average by 2.12%, to even 3.87% for one of the profiles, and that some modifications increase energy consumption by even 6.59%.


2022 ◽  
Author(s):  
Michał Kawalec ◽  
Witold Perkowski ◽  
Borys Łukasik ◽  
Adam Bilar ◽  
Piotr Wolański

In the paper short information about advantages of introduction of detonation combustion to propulsion systems is briefly discussed and then research conducted at the Łukasiewicz-Institute of Aviation on development of the rotating detonation engines (RDE) is presented. Special attention is focused on continuously rotating detonation (CRD), since it offers significant advantages over pulsed detonation (PD). Basic aspects of initiation and stability of the CRD are discussed. Examples of applications of the CRD to gas turbine and rocket engines are presented and a combine cycle engine utilizing CRD are also evaluated. The world's first rocket flight powered by liquid propellant detonation engine is also described.


2022 ◽  
Vol 334 ◽  
pp. 06001
Author(s):  
Massimo Rivarolo ◽  
Federico Iester ◽  
Aristide F. Massardo

This paper presents an innovative algorithm to compare traditional and innovative energy systems onboard for maritime applications. The solutions are compared adopting a multi-criteria method, considering four parameters (weight, volume, cost, emissions) and their relevance according to the kind of ship and navigation route. The algorithm, which includes a large and updated database of market solutions, leads to the implementation of HELM (Helper for Energy Layouts in Maritime applications) tool. HELM was conceived to support the design of maritime systems: it chooses the best technology comparing traditional marine diesel engines, propulsion systems with alternative fuels (methanol, ammonia, LNG) and innovative low-emission technologies (fuel cell and batteries). Two case studies are investigated: (i) a small passenger ship for short routes (ii) and a large size ro-ro cargo ship. For case (i), fuel cells represent a competitive solution, in particular considering navigation in emission control areas. For case study (ii) Internal Combustion Engines shows are the best solution. The evaluation of alternative fuels is performed, considering a sensitivity analysis on emissions’ importance: methanol, LNG, and ammonia are promising solutions. For case (i), the installation of electrical batteries is also evaluated to analyse potential advantages to reduce the amount of H2 stored onboard.


Sign in / Sign up

Export Citation Format

Share Document