Experimental and Computational Evaluation of Performance and Water Management Characteristics of a Bio-Inspired Proton Exchange Membrane Fuel Cell

2015 ◽  
Vol 12 (6) ◽  
Author(s):  
Bhaskar P. Saripella ◽  
Umit O. Koylu ◽  
Ming C. Leu

A bio-inspired proton exchange membrane (PEM) fuel cell with a flow field that mimics a leaf pattern is experimentally and computationally evaluated. Experiments are conducted using a transparent assembly for direct visualization of liquid water within the microchannels. Polarization and power curves are also obtained while advanced simulations are performed to predict distributions of pressure, velocity, and concentrations. The same measurements and computations are also performed for a single serpentine fuel cell. The results establish the superior water management and performance characteristics of the bio-inspired fuel cell in comparison to a conventional one. They also help elucidate the underlying transport mechanisms, validate the computational models, and guide the optimization of bio-inspired fuel cells.

2022 ◽  
pp. 1-33
Author(s):  
Xiuqin Zhang ◽  
Wentao Cheng ◽  
Qiubao Lin ◽  
Longquan Wu ◽  
Junyi Wang ◽  
...  

Abstract Proton exchange membrane fuel cells (PEMFCs) based on syngas are a promising technology for electric vehicle applications. To increase the fuel conversion efficiency, the low-temperature waste heat from the PEMFC is absorbed by a refrigerator. The absorption refrigerator provides cool air for the interior space of the vehicle. Between finishing the steam reforming reaction and flowing into the fuel cell, the gases release heat continuously. A Brayton engine is introduced to absorb heat and provide a useful power output. A novel thermodynamic model of the integrated system of the PEMFC, refrigerator, and Brayton engine is established. Expressions for the power output and efficiency of the integrated system are derived. The effects of some key parameters are discussed in detail to attain optimum performance of the integrated system. The simulation results show that when the syngas consumption rate is 4.0 × 10−5 mol s−1cm−2, the integrated system operates in an optimum state, and the product of the efficiency and power density reaches a maximum. In this case, the efficiency and power density of the integrated system are 0.28 and 0.96 J s−1 cm−2, respectively, which are 46% higher than those of a PEMFC.


Author(s):  
Hyung Hee Cho ◽  
Sanghoon Lee ◽  
Dong-Ho Rhee

Internal water management in proton exchange membrane (PEM) fuel cell has been considered as one of most significant key factors for its performance enhancement. It is because relative humidity of hydrogen and air is strongly related to the performance of PEM fuel cell in terms of H+ movement within the membrane. In addition, production of H2O by chemical reactions can bring several problems during concentration loss region since combination of vapor in supplying air and byproduct of chemical reaction should lead to excess H2O remaining in PEM fuel cell, resulting flooding phenomena which may block air flow channels. Therefore, in order to understand and manage such phenomena to enhance the performance of PEM fuel cell, especially under concentration loss region, this paper focuses on the visualization of the flooding phenomena and application of the modified flow path on the cathode separator for flooding reduction.


2014 ◽  
Vol 592-594 ◽  
pp. 1728-1732 ◽  
Author(s):  
M. Muthukumar ◽  
P. Karthikeyan ◽  
V. Lakshminarayanan ◽  
A.P. Senthil Kumar ◽  
M. Vairavel ◽  
...  

The geometrical and flow parameters are governing the performance of the Proton Exchange Membrane Fuel Cell (PEMFC). The flow channels are used for distributing the reactants uniformly throughout the active area of fuel cell. Among different flow field designs, the serpentine flow field can give better performance to the PEM fuel cell. This paper numerically investigates the effects of the serpentine flow field with different number of passes. The 2 pass, 3 pass and 4 pass serpentine flow field designs of same rib size and channel size were modelled and analyzed using commercially available software package. From the polarization curves and performance curves drawn using the numerical results, the performance of three flow channel designs were compared and the maximum power densities of each design were found


Sign in / Sign up

Export Citation Format

Share Document