Modeling of cold start processes and performance optimization for proton exchange membrane fuel cell stacks

2014 ◽  
Vol 247 ◽  
pp. 738-748 ◽  
Author(s):  
Yibo Zhou ◽  
Yueqi Luo ◽  
Shuhai Yu ◽  
Kui Jiao
Author(s):  
Curtis Marr ◽  
Xianguo Li

The composition and performance optimisation of cathode catalyst platinum and catalyst layer structure in a proton exchange membrane fuel cell has been investigated by including both electrochemical reaction and mass transport process. It is found that electrochemical reactions occur in a thin layer within a few micrometers thick, indicating ineffective catalyst utilization for the present catalyst layer design. The effective use of platinum catalyst decreases with increasing current density, hence lower loadings of platinum are feasible for higher current densities of practical interest without adverse effect on cell performance. The optimal void fraction for the catalyst layer is about 60% and fairly independent of current density, and a 40% supported platinum catalyst yields the best performance amongst various supported catalysts investigated. An optimal amount of membrane content in the void region of the catalyst layer exists for minimum cathode voltage losses due to competition between proton migration through the membrane and oxygen transfer in the void region. The present results will be useful for practical fuel cell designs.


2009 ◽  
Vol 23 (03) ◽  
pp. 537-540 ◽  
Author(s):  
JIANG HUI YIN ◽  
JUN CAO

A general proton exchange membrane fuel cell model including two finite-thickness catalysts is developed in this study, allowing for an in-depth understanding of the effects of the two key electrochemical reactions taking place in the two catalysts. The model is used to predict the performances of fuel cells employing two different flow channel designs, providing insights for fuel cell design and performance optimization.


Energy ◽  
2021 ◽  
Vol 222 ◽  
pp. 119910
Author(s):  
Zirong Yang ◽  
Kui Jiao ◽  
Kangcheng Wu ◽  
Weilong Shi ◽  
Shangfeng Jiang ◽  
...  

2013 ◽  
Vol 58 (1) ◽  
pp. 897-905 ◽  
Author(s):  
T. J. Dursch ◽  
J. F. Liu ◽  
G. J. Trigub ◽  
C. J. Radke ◽  
A. Z. Weber

2022 ◽  
pp. 1-33
Author(s):  
Xiuqin Zhang ◽  
Wentao Cheng ◽  
Qiubao Lin ◽  
Longquan Wu ◽  
Junyi Wang ◽  
...  

Abstract Proton exchange membrane fuel cells (PEMFCs) based on syngas are a promising technology for electric vehicle applications. To increase the fuel conversion efficiency, the low-temperature waste heat from the PEMFC is absorbed by a refrigerator. The absorption refrigerator provides cool air for the interior space of the vehicle. Between finishing the steam reforming reaction and flowing into the fuel cell, the gases release heat continuously. A Brayton engine is introduced to absorb heat and provide a useful power output. A novel thermodynamic model of the integrated system of the PEMFC, refrigerator, and Brayton engine is established. Expressions for the power output and efficiency of the integrated system are derived. The effects of some key parameters are discussed in detail to attain optimum performance of the integrated system. The simulation results show that when the syngas consumption rate is 4.0 × 10−5 mol s−1cm−2, the integrated system operates in an optimum state, and the product of the efficiency and power density reaches a maximum. In this case, the efficiency and power density of the integrated system are 0.28 and 0.96 J s−1 cm−2, respectively, which are 46% higher than those of a PEMFC.


2021 ◽  
Vol 147 (5) ◽  
pp. 04021031
Author(s):  
Qinguo Zhang ◽  
Zheming Tong ◽  
Shuiguang Tong ◽  
Zhewu Cheng ◽  
Liang Lu

Sign in / Sign up

Export Citation Format

Share Document