Phase Change Material For Solar Thermal Energy Storage In Buildings: Numerical Study

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Zineb Bouhssine ◽  
Mostafa Najam ◽  
Mustapha El Alami

Thermal storage plays a major role in a wide variety of industrial, commercial, and residential applications when there is a mismatch between the offer and the claim of energy. In this paper, we study numerically the contribution of phase change materials (PCMs) for solar thermal energy storage (TES) in buildings. The studied configuration is a plane solar collector incorporating a PCM layer and coupled to a concrete slab (a roof of a building). The study is conducted for Casablanca (Morocco) meteorological conditions. Several simulations were performed to optimize the melting temperature and the PCM layer thickness. The results show that PCM imposes, on the roof, a temperature close to its melting temperature. The choice of a melting temperature Tmelt = 22 °C (the local indoor temperature Tc is fixed as Tc = 22 °C) limits the losses through the concrete slab, considerably. This last seems to be, nearly, adiabatic, in this case. Also, the energy released by PCM solidification, overnight, increases the outlet temperature of the coolant fluid to 35 °C and the useful flux to 80 W/m2, increasing the efficiency of the solar collector by night. The PCM functioned both as an energy storage material for the stabilization of the coolant fluid temperature and as an insulating material for the building.

Author(s):  
Mohammad Alhuyi Nazari ◽  
Akbar Maleki ◽  
Mamdouh El Haj Assad ◽  
Marc A. Rosen ◽  
Arman Haghighi ◽  
...  

2021 ◽  
pp. 467-494
Author(s):  
Jyoti Saroha ◽  
Sonali Mehra ◽  
Mahesh Kumar ◽  
Velumani Subramaniam ◽  
Shailesh Narain Sharma

2010 ◽  
Vol 171-172 ◽  
pp. 223-228
Author(s):  
Guan Sheng Chen ◽  
Ren Yuan Zhang ◽  
Feng Li ◽  
Shi Dong Li ◽  
Li Zhang

Phase change thermal storage used metal as phase change material (PCM) is an important mode of solar thermal energy storage. In this paper, the heat charging processes of solar heating units were simulated under three kinds of heating flux 100,150 and 200kW/m2 at the bottom face respectively, while the thickness of heat receiving layer at the bottom was in 5, 10 and 15mm. Al-Si alloy was selected as PCM used in the cylindrical body of the units which were in the size of φ1000×1000mm. The change of temperature and solid-liquid phase change interface of Al-Si alloy were analyzed to find out the suitable absorber thickness of thermal energy storage units which can run safety under the condition of temperature 700~900K and heat flux 100~200kW/m2, such as the application of solar thermal energy storage unit in high temperature solar thermal power stations. In the last a test system was built up and the experimental result was close to the simulation value of a unit in the size of φ300×1000×10mm.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2043 ◽  
Author(s):  
Hai-Chen Zhang ◽  
Ben-hao Kang ◽  
Xinxin Sheng ◽  
Xiang Lu

A series of novel bio-based form stable composite phase-change materials (fs-CPCMs) for solar thermal energy storage and management applications were prepared, using the pomelo peel flour (PPF) as the supporting matrix and poly (ethylene glycol) (PEG) or isocyanate-terminated PEG to induce a phase change. The microscopic structure, crystalline structures and morphologies, phase change properties, thermal stability, light-to-thermal conversion behavior, and thermal management characteristics of the obtained fs-CPCMs were studied. The results indicate that the obtained fs-CPCM-2 presented remarkable phase-change performance and high thermal stability. The melting latent heat and crystallization heat for fs-CPCM-2 are 143.2 J/g and 141.8 J/g, respectively, and its relative enthalpy efficiency ( λ ) is 87.4%, which are higher than most reported values in the related literature. The obtained novel bio-based fs-CPCM-2 demonstrated good potential for applications in solar thermal energy storage and waste heat recovery.


Sign in / Sign up

Export Citation Format

Share Document