Fabrication of Metal–Polymer Nanocomposites by In-Fiber Instability

2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Ting-Chiang Lin ◽  
Jingzhou Zhao ◽  
Chezheng Cao ◽  
Abdolreza Javadi ◽  
Yingchao Yang ◽  
...  

Thermal fiber drawing process has emerged as a promising nanomanufacturing process to generate high-throughput, well aligned, and indefinitely long micro/nanostructures. However, scalable fabrication of metal–polymer nanocomposite is still a challenge, since it is still very difficult to control metal core geometry at nanoscale due to the low-viscosity and high-surface energy of molten metals in cladding materials (e.g., polymer or glass). Here, we show that a scalable nanomanufacture of metal–polymer nanocomposite via thermal fiber drawing is possible. Polyethersulfone (PES) fibers embedded with Sn nanoparticles (<200 nm) were produced by the iterative size reduction thermal fiber drawing. A post-characterization procedure was developed to successfully reveal the metal core geometry at submicron scale. A three-stage control mechanism is proposed to realize the possible control of the metal nanoparticle morphology. This thermal drawing approach promises a scalable production of metal–polymer nanocomposite fibers with unique physicochemical properties for exciting new functionalities.

2016 ◽  
Author(s):  
Jingzhou Zhao ◽  
Abdolreza Javadi ◽  
Ting-Chiang Lin ◽  
Injoo Hwang ◽  
Yingchao Yang ◽  
...  

Thermal fiber drawing has emerged as a novel process for the continuous manufacturing of semiconductor and polymer nanoparticles. Yet a scalable production of metal nanoparticles by thermal drawing is not reported due to the low viscosity and high surface tension of molten metals. Here we present a generic method for the scalable nanomanufacturing of metal nanoparticles via thermal drawing based on droplet break-up emulsification of immiscible glass/metal systems. We experimentally show the scalable manufacturing of metal Sn nanoparticles (<100 nm) in Polyethersulfone (PES) fibers as a model system. This process opens a new pathway for scalable manufacturing of most metal nanoparticles as well as composites with embedded metal nanoparticles, which may find exciting photonic, electrical, or energy applications.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Jingzhou Zhao ◽  
Abdolreza Javadi ◽  
Ting-Chiang Lin ◽  
Injoo Hwang ◽  
Yingchao Yang ◽  
...  

Thermal fiber drawing has emerged as a novel process for the continuous manufacturing of semiconductor and polymer nanoparticles. Yet a scalable production of metal nanoparticles by thermal drawing is not reported due to the low viscosity and high surface tension of molten metals. Here, we present a generic method for the scalable nanomanufacturing of metal nanoparticles via thermal drawing based on droplet break-up emulsification of immiscible polymer/metal systems. We experimentally show the scalable manufacturing of metal Sn nanoparticles (<100 nm) in polyethersulfone (PES) fibers as a model system. The underlying mechanism for the particle formation is revealed, and a strategy for the particle diameter control is proposed. This process opens a new pathway for scalable manufacturing of metal nanoparticles from liquid state facilitated solely by the hydrodynamic forces, which may find exciting photonic, electrical, or energy applications.


2013 ◽  
Author(s):  
R. Abargues ◽  
M. L. Martinez-Marco ◽  
P. J. Rodriguez-Canto ◽  
J. Marques-Hueso ◽  
J. P. Martinez-Pastor

2007 ◽  
Vol 18 (12) ◽  
pp. 125604 ◽  
Author(s):  
D K Avasthi ◽  
Y K Mishra ◽  
D Kabiraj ◽  
N P Lalla ◽  
J C Pivin

Author(s):  
Xiangyu Li ◽  
Wonjun Park ◽  
Yong P. Chen ◽  
Xiulin Ruan

Metal nanoparticle has been a promising option for fillers in thermal interface materials due to its low cost and ease of fabrication. However, nanoparticle aggregation effect is not well understood because of its complexity. Theoretical models, like effective medium approximation model, barely cover aggregation effect. In this work, we have fabricated nickel-epoxy nanocomposites and observed higher thermal conductivity than effective medium theory predicts. Smaller particles are also found to show higher thermal conductivity, contrary to classical models indicate. A two-level EMA model is developed to account for aggregation effect and to explain the size-dependent enhancement of thermal conductivity by introducing local concentration in aggregation structures.


2016 ◽  
Vol 256 ◽  
pp. 133-138 ◽  
Author(s):  
Marialaura Tocci ◽  
Christoph Zang ◽  
Ines Cadòrniga Zueco ◽  
Annalisa Pola ◽  
Michael Modigell

Rheological properties of liquid metals are difficult to investigate experimentally because of the extreme border conditions to consider. One difficulty is related to the low viscosity of liquid metals. Surface tension effects can cause forces that can be considerably higher than the viscous forces in the liquid metals. Evaluating the experimental data without considering these effects leads to an apparent shear thinning behavior of the material. In the present study, experiments were performed by means of a Searle rheometer changing the dimension of the measuring system with metals of high surface tension, as mercury and tin. It became evident that surface tension plays a significant role in the effects that falsify measurements at low shear rate. Conclusions can be drawn to what extent measurements of semi-solid metals are affected.


2007 ◽  
Vol 204 (6) ◽  
pp. 1699-1705 ◽  
Author(s):  
J. Macanás ◽  
J. Parrondo ◽  
M. Muñoz ◽  
S. Alegret ◽  
F. Mijangos ◽  
...  

The types of apparatus used to produce liquid sheets are classified according to the manner in which the energy is imparted to the liquid. The factors influencing the development, stability and manner of disintegration of a liquid sheet are examined more particularly with flat sheets produced from the single-hole fan-spray nozzle and the spinning disk. The development of the liquid sheet is influenced by the liquid properties. As the working pressure is raised the width of the sheet increases, but this development is hindered by high surface tension. It is shown that the effect of a surface-active agent on the development is only influential where the surface is not expanding or changing rapidly. Consequently its effect is more pronounced as the liquid moves farther away from the orifice. Increase of viscosity at the same pressure causes the region of disintegration to move away from the orifice, and high viscosity maintains the sheet undisturbed by air friction. Density has little effect on the area of the sheet. The effect of turbulence in the orifice is shown to be responsible for at least two types of disturbance in the sheet which results in holes being formed near the orifice. The depth of the disturbance in the sheet has to be equal to the thickness before disruption occurs. Similar disruption through the formation of holes can be caused by suspensions of unwettable particles. Wettable particles in low concentration, irrespective of their size, have no effect on the manner of disintegration. The most placid, stable and resistant sheet is obtained with a liquid of high surface tension, high viscosity, low density, giving low turbulence in the nozzle. Such a sheet will disintegrate when the velocity is raised and disintegration can occur through air friction. The easiest sheet to disintegrate is obtained with a liquid of low surface tension, low viscosity, low density and with low turbulence in the nozzle. Disintegration will occur near the nozzle at low velocities through waves caused by air friction. Disintegration through the formation of holes in the sheet can occur at low velocity with liquids of high surface-tension, low viscosity and high density where turbulence obtains in the nozzle. The formation of ligaments or threads is a necessary stage before the production of drops. Threads can be formed directly from any free edge or in the boundary. A free edge is formed when equilibrium exists between surface tension and inertia forces. In the spinning disk, at low flow rates, where the sheet is in contact with the surface of the disk, drops are formed at the ends of threads which break down into a limited number of sizes. At high flow rates a free edge of liquid exists outside the periphery of the disk with the formation of more irregular threads and a wider spectrum of drop sizes results. Where perforations occur in the sheet, expansion of the hole by surface tension occurs very regularly so that the holes remain nearly circular until they coalesce forming long threads. These long threads quickly become unstable and break down into drops. Threads being approximately uniform in diameter produce uniform drops, but the irregular areas of liquid which occur when a number of holes expand towards each other produce a wide variety of drop sizes. When the velocity of the sheet in the atmosphere is high, air friction causes slight variations in the sheet to develop rapidly into major wave disturbances, and these can result in holes being blown through the sheet so that disruption starts before the formation of a leading edge. With liquids having visco-elastic properties the sheet disintegrates through the formation of waves, but the rapid increase of viscosity, as the rate of shear is reduced, prevents further break-up of the threads into drops and a web of fine threads only is produced.


Sign in / Sign up

Export Citation Format

Share Document