Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Theory and Fundamentals in Heat Transfer; Nanoscale Thermal Transport; Heat Transfer in Equipment; Heat Transfer in Fire and Combustion; Transport Processes in Fuel Cells and Heat Pipes; Boiling and Condensation in Macro, Micro and Nanosystems
Latest Publications


TOTAL DOCUMENTS

67
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791850329

Author(s):  
Bernardo Buonomo ◽  
Oronzio Manca ◽  
Sergio Nardini ◽  
Alessandra Diana

Natural convection in horizontal rectangular channel without or with aluminum foam is experimentally and numerically investigated. In the case with aluminum foam the channel is partially filled. In both cases, the bottom wall of the channel is heated at a uniform heat flux and the upper wall is unheated and it is not thermally insulated to the external ambient. The experiments are performed with working fluid air. Different values of wall heat flux at lower surface are considered in order to obtain some Grashof numbers and different heated wall temperature distributions. Two different aluminum foams are considered in the experimental investigation, one from “M-pore”, with 10 and 30 pore per inch (PPI), and the other one from “ERG”, with 10, 20 and 40 PPI. The numerical simulation is carried out by a simplified two-dimensional model. It is found that the heat transfer is better when the channel is partially filled and the emissivity is low, whereas the heated wall temperature values are higher when the channel is partially filled and the heated bottom plate has high emissivity. The investigation is achieved also by flow visualization which is carried out to identify the main flow shape and development and the transition region along the channel. The visualization of results, both experimental and numerical, grants the description of secondary motions in the channel.


Author(s):  
Yi Lu ◽  
Aritra Sur ◽  
Dong Liu ◽  
Carmen Pascente ◽  
Paul Ruchhoeft

Electrowetting has drawn significant interests due to the potential applications in electronic displays, lab-on-a-chip devices and electro-optical switches, etc. Current understanding of electrowetting-induced droplet dynamics is hindered by the inadequacy of available numerical and theoretical models in properly handling the dynamic contact angle at the moving contact line. A combined numerical and experimental approach was employed in this work to study the spatiotemporal responses of a droplet subject to EW with both direct current and alternating current actuating signals. The time evolution of the droplet shape was measured using high-speed photography. Computational fluid dynamics models were developed by using the Volume of Fluid-Continuous Surface Force method in conjunction with a selected dynamic contact angle model. It was found that the numerical models were able to accurately predict the key parameters of the electrowetting-induced droplet dynamics.


Author(s):  
Soheil Soleimanikutanaei ◽  
Cheng-Xian Lin ◽  
Dexin Wang

Heat and water recovery using Transport Membrane Condenser (TMC) based heat exchangers is a promising technology in power generation industry. In this type of innovative heat exchangers the tube walls are made of a nano-porous material and have a high membrane selectivity which is able to extract condensate water from the flue gas in the presence of the other non-condensable gases such as CO2, O2 and N2. Considering the fact that for industrial applications, a matrix of TMC heat exchangers with several TMC modulus in the cross section or along the flow direction is necessary. Numerical simulation of multi-stage TMC heat exchanger units is of a great importance in terms of design, performance evaluation and optimization. In this work, performance of a two-stage TMC heat exchanger unit has been studied numerically using a multi-species transport model. In order to investigate the performance of the two-stage TMC heat exchanger unit, parametric study on the effect of transversal and longitudinal pitches in terms of heat transfer, pressure drop and condensation rate inside the heat exchangers have been carried out. The results indicate that the heat transfer and condensation rates both increase by reducing TMC tube pitches in the second stage and increasing the number of TMC tube pitches in the first stage of the units.


Author(s):  
Tariq Amin Khan ◽  
Wei Li

Numerical study is performed on the effect of thermal conductivity of porous media (k) on the Nusselt number (Nu) and performance evaluation criteria (PEC) of a tube. Two-dimensional axisymmetric forced laminar and fully developed flow is assumed. Porous medium partially inserted in the core of a tube is investigated under varied Darcy number (Da), i.e., 10−6 ≤ Da ≤ 10−2. The range of Re number used is 100 to 2000 and the conductivity of porous medium is 1.4 to 202.4 W/(m.K) with air as the working fluid. The momentum equations are used to describe the fluid flow in the clear region. The Darcy-Forchheimer-Brinkman model is adopted for the fluid transport in the porous region. The mathematical model for energy transport is based on the one equation model which assumes a local thermal equilibrium between the fluid and the solid phases. Results are different from the conventional thoughts that porous media of higher thermal conductivity can enhance the performance (PEC) of a tube. Due to partial porous media insertion, the upstream parabolic velocity profile is destroyed and the flow is redistributed to create a new fully develop velocity profile downstream. The length of this flow redistribution to a new developed laminar flow depends on the Da number and the hydrodynamic developing length increases with increasing Da number. Moreover, the temperature profile is also readjusted within the tube. The Nu and PEC numbers have a nonlinear trend with varying k. At very low Da number and at a lower k, the Nu number decreases with increasing Re number while at higher k, the Nu number first increases to reach its peak value and then decreases. At higher Re number, the results are independent of k. However, at a higher Da number, the Nu and PEC numbers significantly increases at low Re number while slightly increases at higher Re number. Hence, the change in Nu and PEC numbers neither increases monotonically with k, nor with Re number. Investigation of PEC number shows that at very low Da number (Da = 10−6), inserting porous media of a low k is effective at low Re number (Re ≤ 500) while at high Re number, using porous material is not effective for the overall performance of a tube. However, at a relatively higher Da number (Da = 10−2), high k can be effective at higher Re number. Moreover, it is found that the results are not very sensitive to the inertia term at lower Da number.


Author(s):  
Nicholas R. Jankowski ◽  
Andrew N. Smith ◽  
Brendan M. Hanrahan

Recent high energy density thin film material development has led to an increased interest in pyroelectric energy conversion. Using state-of-the-art lead-zirconate-titanate piezoelectric films capable of withstanding high electric fields we previously demonstrated single cycle energy conversion densities of 4.28 J/cm3. While material improvement is ongoing, an equally challenging task involves developing the thermal and thermodynamic process though which we can harness this thermal-to-electric energy conversion capability. By coupling high speed thermal transients from pulsed heating with rapid charge and discharge cycles, there is potential for achieving high energy conversion efficiency. We briefly present thermodynamic equivalent models for pyroelectric power generation based on the traditional Brayton and Ericsson cycles, where temperature-pressure states in a working fluid are replaced by temperature-field states in a solid pyroelectric material. Net electrical work is then determined by integrating the path taken along the temperature dependent polarization curves for the material. From the thermodynamic cycles we identify the necessary cyclical thermal conditions to realize net power generation, including a figure of merit, rEC, or the electrocaloric ratio, to aid in guiding generator design. Additionally, lumped transient analytical heat transfer models of the pyroelectric system with pulsed thermal input have been developed to evaluate the impact of reservoir temperatures, cycle frequency, and heating power on cycle output. These models are used to compare the two thermodynamic cycles. This comparison shows that as with traditional thermal cycles the Ericsson cycle provides the potential for higher cycle work while the Brayton cycle can produce a higher output power at higher thermal efficiency. Additionally, limitations to implementation of a high-speed Ericsson cycle were identified, primarily tied to conflicts between the available temperature margin and the requirement for isothermal electrical charging and discharging.


Author(s):  
Hilario Terres ◽  
Sandra Chavez ◽  
Raymundo Lopez ◽  
Arturo Lizardi ◽  
Araceli Lara

In this work, the heating process for apple, eggplant, zucchini and potato by means of evaluation of their thermal properties and the Biot number determined in experimental form is presented. The heating process is carried out using a solar cooker box-type as heating device. The thermal experimental properties determined are conductivity (k), density (D), specific heat (C), diffusivity (Dif) and the Biot number (Bi) for each product evaluated. In the experimentation, temperatures for center and surface in each product and water were measured in controlled conditions. For those measures, a device Compact Fieldpoint and thermocouples placed in the points studied were used. By using correlations with temperature as function, k, D and C were calculated, while by using equations in transitory state for the products modeled as sphere and cylinder was possible to estimate the Biot number after calculation of the heat transfer coefficient for each case. Results indicate the higher value for k, C and Dif correspond to zucchini (0.65 W/m °C, 4084.5 J/kg °C, 1.5 × 10−7 m2), while higher value for D correspond to potato (1197.5 kg/m3). The lowest values for k and C were obtained for potato (0.59 W/m °C, 3658.3 J/kg °C) while lowest values for D and Dif, correspond to zucchini (998.2 kg/m3) and potato (1.45 × 10−7 m2/s) respectively. The maximum and minimum values for Bi corresponded to potato (21.4) and zucchini (0.41) in respective way. The results obtained are very useful in applications for solar energy devices, where estimates for properties are very important to generate new results, for example, numerical simulations. Also, results could be used to evaluate the cooking power in solar cookers when the study object is oriented in that direction.


Author(s):  
Yuanpeng Yao ◽  
Huiying Wu ◽  
Zhenyu Liu

In this paper, a numerical model employing 3D foam structure represented by Weaire-Phelan foam cell is developed to study the steady heat conduction of high porosity open-cell metal foam/paraffin composite at the pore-scale level. Two conduction problems are considered in the cubic representative computation unit of the composite material: one with constant temperature difference between opposite sides of the cubic unit (that can be used to determine the effective thermal conductivity (ETC)) and the second with constant heat flux at the interface between metal foam and paraffin (that can be used to determine the interstitial conduction heat transfer coefficient (ICHTC)). The effects of foam pore structure parameters (pore size and porosity) on heat conduction are investigated for the above two problems. Results show that for the first conduction problem, the effect of foam structure on heat conduction (i.e. the ETC) is related to porosity rather than pore size. The essential reason is due to the thermal equilibrium state between metal foam and paraffin indicated by the negligible interstitial heat transfer. While for the second conduction problem with inherent thermal non-equilibrium effect, it shows that both porosity and pore size significantly influence the interstitial heat conduction (i.e. the ICHTC). Furthermore, the present ETC and ICHTC data are compared to the results in the published literature. It shows that our ETC data agree well with the reported experimental results, and are more accurate than the numerical predications based on body-centered-cubic foam cell in literature. And our ICHTC data are in qualitative agreement with the published numerical results, but the present results are based on a more realistic foam structure.


Author(s):  
Hilario Terres ◽  
Sandra Chavez ◽  
Raymundo Lopez ◽  
Arturo Lizardi ◽  
Araceli Lara

A evaluation of the conduction heat loss over their cover for four different solar cookers box-type (1. Square solar cooker with inner reflectors placed in right angles, 2. Square solar cooker with inner reflector placed in different angles, 3. Rectangular solar cooker with inner reflectors placed in different angles and 4. Octagonal solar cooker with inner reflectors placed in right angles) is presented. In the heating process in a solar cooker box-type, the conduction heat loss in their cover is the most important in comparative with convection and radiation losses. The cover in solar cookers is made with clear glasses, which allows the inlet solar radiation inside of it. When the heating process happen, the temperature in the cover glasses is important and is important for this part. To evaluate the magnitude for the heat loss, controlled tests were planned, where a solar radiation simulator was used as energy source over the solar cookers considered. In the experiments, thermocouples to determine the gradient temperature for thickness among glasses were placed. In this activity, a Compact Field and LabView software were used. Also, in the experimental tests, thermographic imagines for some instants during the heating process were taken. According results, the conduction heat losses are bigger than 25 % of the inlet energy Flux in the cookers. The biggest values for temperature on the glasses correspond to the solar cooker 3, while minimum values are obtained for the solar cooker 1. The solar cooker 1 present the biggest conduction heat losses and the cooker 4, has the minimum values for the losses. Results of this work can be useful and important for design proposes which could impacts on save of money and cooking time.


Author(s):  
Hao Chen ◽  
Jiabing Wang ◽  
Kun Yang

The porous composite system is consists of porous medium and free fluid layer, which has extensive industrial applications. The study method for the flow field in the porous composite system includes the microscopic, mesoscopic and macroscopic approaches. When the two-domain approach is adopted, which is one of the macroscopic methods, the momentum transport boundary conditions at the interface between porous medium and free fluid layer is essential to analyze the flow field in the system. When Darcy equation is adopted to describe the flow in porous region, the Beavers-Joseph (BJ) interface condition can be used. When Darcy-Brinkman equation is adopted to describe the flow in porous region, the stress-jump (Ochoa-Tapia & Whitaker: OTW) interface condition can be used. To utilize these interface conditions, the velocity slip coefficient used in the BJ interface condition and the stress-jump coefficient used in the OTW interface condition should be specified. In this paper, a brush configuration is approximately treated as the equivalent porous media in the composite system. A numerical simulation method is used to obtain the microscopic solution for the flow in the system based on the Navier-Stokes equation applied in whole system, and an analytical method is used to obtain the corresponding macroscopic solution based on the two-domain approach. By comparing the microscopic and macroscopic solutions, the velocity slip coefficient and the stress-jump coefficient are determined since they can be treated as adjustable parameters. The influence of different flow types, including Poiseuille flow, Couette flow, and free boundary flow, are investigated. Also the impact of free fluid layer thickness and porous structure on the velocity slip coefficient and the stress-jump coefficient are discussed. The results indicate that, the velocity slip coefficient and the stress-jump coefficient are not only the parameters which depend on the porous structure, but also depend on the thickness of free fluid layer and flow type. When the thickness of free fluid layer is lower than a certain value, the impact of free fluid layer thickness on the velocity slip coefficient and the stress-jump coefficient is much obvious. In addition, when the thickness of free fluid layer is small, these coefficients are found to be dependent on the flow type. However, when the thickness of free fluid layer is large, the stress jump coefficient is independent of the thickness of free fluid layer and the flow type. Thus the stress jump coefficient obtained for a specific case can be used to predict velocity for different flow types and different thickness of free fluid layers.


Author(s):  
Xiangyu Li ◽  
Wonjun Park ◽  
Yong P. Chen ◽  
Xiulin Ruan

Metal nanoparticle has been a promising option for fillers in thermal interface materials due to its low cost and ease of fabrication. However, nanoparticle aggregation effect is not well understood because of its complexity. Theoretical models, like effective medium approximation model, barely cover aggregation effect. In this work, we have fabricated nickel-epoxy nanocomposites and observed higher thermal conductivity than effective medium theory predicts. Smaller particles are also found to show higher thermal conductivity, contrary to classical models indicate. A two-level EMA model is developed to account for aggregation effect and to explain the size-dependent enhancement of thermal conductivity by introducing local concentration in aggregation structures.


Sign in / Sign up

Export Citation Format

Share Document