Traveling Wave Solutions of a Two-Component Dullin–Gottwald–Holm System

2016 ◽  
Vol 12 (3) ◽  
Author(s):  
Jiyu Zhong ◽  
Shengfu Deng

In this paper, we investigate the traveling wave solutions of a two-component Dullin–Gottwald–Holm (DGH) system. By qualitative analysis methods of planar systems, we investigate completely the topological behavior of the solutions of the traveling wave system, which is derived from the two-component Dullin–Gottwald–Holm system, and show the corresponding phase portraits. We prove the topological types of degenerate equilibria by the technique of desingularization. According to the dynamical behaviors of the solutions, we give all the bounded exact traveling wave solutions of the system, including solitary wave solutions, periodic wave solutions, cusp solitary wave solutions, periodic cusp wave solutions, compactonlike wave solutions, and kinklike and antikinklike wave solutions. Furthermore, to verify the correctness of our results, we simulate these bounded wave solutions using the software maple version 18.

2020 ◽  
Vol 30 (07) ◽  
pp. 2050109
Author(s):  
Jibin Li ◽  
Guanrong Chen ◽  
Jie Song

This paper studies the bifurcations of phase portraits for the regularized Saint-Venant equation (a two-component system), which appears in shallow water theory, by using the theory of dynamical systems and singular traveling wave techniques developed in [Li & Chen, 2007] under different parameter conditions in the two-parameter space. Some explicit exact parametric representations of the solitary wave solutions, smooth periodic wave solutions, periodic peakons, as well as peakon solutions, are obtained. More interestingly, it is found that the so-called [Formula: see text]-traveling wave system has a family of pseudo-peakon wave solutions, and their limiting solution is a peakon solution. In addition, it is found that the [Formula: see text]-traveling wave system has two families of uncountably infinitely many solitary wave solutions and compacton solutions.


2016 ◽  
Vol 26 (10) ◽  
pp. 1650175
Author(s):  
Wenjing Zhu ◽  
Jibin Li

In this paper, we consider the Burgers-[Formula: see text] equation. By using the method of dynamical systems, we obtain bifurcations of the phase portraits of the traveling wave system under different parameter conditions. Corresponding to some special level curves, we derive possible exact explicit parametric representations of solutions (containing periodic wave solutions, peakon solutions, periodic peakon solutions, solitary wave solutions and compacton solutions) under different parameter conditions.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250305 ◽  
Author(s):  
JIBIN LI ◽  
ZHIJUN QIAO

In this paper, we apply the method of dynamical systems to a generalized two-component Camassa–Holm system. Through analysis, we obtain solitary wave solutions, kink and anti-kink wave solutions, cusp wave solutions, breaking wave solutions, and smooth and nonsmooth periodic wave solutions. To guarantee the existence of these solutions, we give constraint conditions among the parameters associated with the generalized Camassa–Holm system. Choosing some special parameters, we obtain exact parametric representations of the traveling wave solutions.


2021 ◽  
Vol 31 (01) ◽  
pp. 2150001
Author(s):  
Jibin Li ◽  
Guanrong Chen ◽  
Yan Zhou

This paper studies two two-component shallow water wave models. From the dynamical systems approach and using the singular traveling wave theory developed by Li and Chen [2007], all possible bounded solutions (solitary wave solutions, pseudo-peakons, periodic peakons, as well as smooth periodic wave solutions) are obtained under different parameter conditions. More than six explicit exact parametric representations are derived. More interestingly, it was found that, for the two-component Camassa–Holm equations with constant vorticity, its [Formula: see text]-traveling wave system has a pseudo-peakon wave solution. In addition, its [Formula: see text]-traveling wave system has four families of uncountably infinitely many solitary wave solutions. The new results complete a recent study of Dutykh and Ionescu-Kruse [2019].


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xinghua Fan ◽  
Shasha Li

The dual Ito equation can be seen as a two-component generalization of the well-known Camassa-Holm equation. By using the theory of planar dynamical system, we study the existence of its traveling wave solutions. We find that the dual Ito equation has smooth solitary wave solutions, smooth periodic wave solutions, and periodic cusp solutions. Parameter conditions are given to guarantee the existence.


2020 ◽  
Vol 30 (03) ◽  
pp. 2050036 ◽  
Author(s):  
Jibin Li ◽  
Guanrong Chen ◽  
Jie Song

For three two-component shallow water wave models, from the approach of dynamical systems and the singular traveling wave theory developed in [Li & Chen, 2007], under different parameter conditions, all possible bounded solutions (solitary wave solutions, pseudo-peakons, periodic peakons, as well as smooth periodic wave solutions) are derived. More than 19 explicit exact parametric representations are obtained. Of more interest is that, for the integrable two-component generalization of the Camassa–Holm equation, it is found that its [Formula: see text]-traveling wave system has a family of pseudo-peakon wave solutions. In addition, its [Formula: see text]-traveling wave system has two families of uncountably infinitely many solitary wave solutions. The new results complete a recent study by Dutykh and Ionescu-Kruse [2016].


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Ming Song ◽  
Zhengrong Liu

We use the bifurcation method of dynamical systems to study the traveling wave solutions for the generalized Zakharov equations. A number of traveling wave solutions are obtained. Those solutions contain explicit periodic wave solutions, periodic blow-up wave solutions, unbounded wave solutions, kink profile solitary wave solutions, and solitary wave solutions. Relations of the traveling wave solutions are given. Some previous results are extended.


2016 ◽  
Vol 26 (10) ◽  
pp. 1650172
Author(s):  
Wenjing Zhu ◽  
Jibin Li

In this paper, we consider the traveling wave solutions for a shallow water equation. The corresponding traveling wave system is a singular planar dynamical system with one singular straight line. On the basis of the theory of the singular traveling wave systems, we obtain the bifurcations of phase portraits and explicit exact parametric representations for solitary wave solutions and smooth periodic wave solutions, as well as periodic peakon solutions. We show the existence of compacton solutions of the equation under different parameter conditions.


2019 ◽  
Vol 29 (09) ◽  
pp. 1950128
Author(s):  
Jianli Liang ◽  
Jibin Li ◽  
Yi Zhang

This paper investigates two generalized two-component peakon type dual systems, which can be reduced to the same planar dynamical systems via the dynamical system approach and the theory of singular traveling wave systems, where one of them contains the two-component Camassa–Holm system. By bifurcation analysis on the corresponding traveling wave system, we obtain the phase portraits and derive possible exact traveling wave solutions that include solitary wave solution, peakon and anti-peakon, pseudo-peakon, periodic peakon, compacton and periodic wave solution. Our results are also applicable to the two-component Camassa–Holm equation.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zhao Li ◽  
Peng Li ◽  
Tianyong Han

In this paper, the bifurcation, phase portraits, traveling wave solutions, and stability analysis of the fractional generalized Hirota–Satsuma coupled KdV equations are investigated by utilizing the bifurcation theory. Firstly, the fractional generalized Hirota–Satsuma coupled KdV equations are transformed into two-dimensional Hamiltonian system by traveling wave transformation and the bifurcation theory. Then, the traveling wave solutions of the fractional generalized Hirota–Satsuma coupled KdV equations corresponding to phase orbits are easily obtained by applying the method of planar dynamical systems; these solutions include not only the bell solitary wave solutions, kink solitary wave solutions, anti-kink solitary wave solutions, and periodic wave solutions but also Jacobian elliptic function solutions. Finally, the stability criteria of the generalized Hirota–Satsuma coupled KdV equations are given.


Sign in / Sign up

Export Citation Format

Share Document