breaking wave
Recently Published Documents


TOTAL DOCUMENTS

706
(FIVE YEARS 123)

H-INDEX

43
(FIVE YEARS 6)

2022 ◽  
Vol 246 ◽  
pp. 110438
Author(s):  
Bachar Mallat ◽  
Grégory Germain ◽  
Jean-Yves Billard ◽  
Céline Gabillet

2022 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
Miyoung Yun ◽  
Jinah Kim ◽  
Kideok Do

Estimating wave-breaking indexes such as wave height and water depth is essential to understanding the location and scale of the breaking wave. Therefore, numerous wave-flume laboratory experiments have been conducted to develop empirical wave-breaking formulas. However, the nonlinearity between the parameters has not been fully incorporated into the empirical equations. Thus, this study proposes a multilayer neural network utilizing the nonlinear activation function and backpropagation to extract nonlinear relationships. Existing laboratory experiment data for the monochromatic regular wave are used to train the proposed network. Specifically, the bottom slope, deep-water wave height and wave period are plugged in as the input values that simultaneously estimate the breaking-wave height and wave-breaking location. Typical empirical equations employ deep-water wave height and length as input variables to predict the breaking-wave height and water depth. A newly proposed model directly utilizes breaking-wave height and water depth without nondimensionalization. Thus, the applicability can be significantly improved. The estimated wave-breaking index is statistically verified using the bias, root-mean-square errors, and Pearson correlation coefficient. The performance of the proposed model is better than existing breaking-wave-index formulas as well as having robust applicability to laboratory experiment conditions, such as wave condition, bottom slope, and experimental scale.


2021 ◽  
Vol 9 (12) ◽  
pp. 1440
Author(s):  
Miguel Uh Zapata ◽  
Damien Pham Van Bang ◽  
Kim Dan Nguyen

The numerical modeling of sediment transport under wave impact is challenging because of the complex nature of the triple wave–structure–sediment interaction. This study presents three-dimensional numerical modeling of sediment scouring due to non-breaking wave impact on a vertical seawall. The Navier–Stokes–Exner equations are approximated to calculate the full evolution of flow fields and morphodynamic responses. The bed erosion model is based on the van Rijn formulation with a mass-conservative sand-slide algorithm. The numerical solution is obtained by using a projection method and a fully implicit second-order unstructured finite-volume method in a σ-coordinate computational domain. This coordinate system is employed to accurately represent the free-surface elevation and sediment/water interface evolution. Experimental results of the velocity field, surface wave motion, and scour hole formation hole are used to compare and demonstrate the proposed numerical method’s capabilities to model the seawall scour.


Author(s):  
Costel Ungureanu

Starting with January 2013, naval architects faces new challenges, as all ships greater than 400 tons must comply with energy efficiency index (MPEC 62, 2011). From ship hydrodynamics point of view one handy solution is using Energy Saving Devices (ESD), with the main purpose to improve the flow parameters entering the propeller. For ballast loading condition the ESD may intersect the free surface disturbing and complicating the flow due to free surface /boundary layer interaction, turbulence and breaking wave effects that coexist and which are not completely clarified so far. Therefore, a free surface flow around a NACA 0012 surface piercing hydrofoil is numerically investigated and the results are compared to experimental results obtained in the Towing Tank of the Naval Architecture Faculty, “Dunarea de Jos” University of Galati. The comparison includes drag and free surface elevation on hydrofoil surface together with numerical uncertainty.


2021 ◽  
Author(s):  
Shiva P. Pudasaini ◽  
Michael Krautblatter

Abstract. Proper knowledge of velocity is required in accurately determining the enormous destructive energy carried by a landslide. We present the first, simple and physics-based general analytical landslide velocity model that simultaneously incorporates the internal deformation (non-linear advection) and externally applied forces, consisting of the net driving force and the viscous resistant. From the physical point of view, the model stands as a novel class of non-linear advective – dissipative system where classical Voellmy and inviscid Burgers' equation are specifications of this general model. We show that the non-linear advection and external forcing fundamentally regulate the state of motion and deformation, which substantially enhances our understanding of the velocity of a coherently deforming landslide. Since analytical solutions provide the fastest, the most cost-effective and the best rigorous answer to the problem, we construct several new and general exact analytical solutions. These solutions cover the wider spectrum of landslide velocity and directly reduce to the mass point motion. New solutions bridge the existing gap between the negligibly deforming and geometrically massively deforming landslides through their internal deformations. This provides a novel, rapid and consistent method for efficient coupling of different types of mass transports. The mechanism of landslide advection, stretching and approaching to the steady-state has been explained. We reveal the fact that shifting, up-lifting and stretching of the velocity field stem from the forcing and non-linear advection. The intrinsic mechanism of our solution describes the fascinating breaking wave and emergence of landslide folding. This happens collectively as the solution system simultaneously introduces downslope propagation of the domain, velocity up-lift and non-linear advection. We disclose the fact that the domain translation and stretching solely depends on the net driving force, and along with advection, the viscous drag fully controls the shock wave generation, wave breaking, folding, and also the velocity magnitude. This demonstrates that landslide dynamics are architectured by advection and reigned by the system forcing. The analytically obtained velocities are close to observed values in natural events. These solutions constitute a new foundation of landslide velocity in solving technical problems. This provides the practitioners with the key information in instantly and accurately estimating the impact force that is very important in delineating hazard zones and for the mitigation of landslide hazards.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jingjing Wang ◽  
Lixin Guo ◽  
Yiwen Wei ◽  
Shuirong Chai ◽  
Ke Li ◽  
...  

A new electromagnetic (EM) scattering model of the sea surface with single breaking waves is proposed based on the high-frequency method in this paper. At first, realistic breaking wave sequences are obtained by solving the fluid equations which are simplified. Then, the rough sea surface is established using the linear filtering method. A new wave model is obtained by combining breaking waves with rough sea surface using a 3D coordinate transformation. Finally, the EM scattering features of the sea surface with breaking waves are studied by using shooting and bouncing rays and the physical theory of diffraction (SBR-PTD). It is found that the structure that is similar to a dihedral corner reflector between the breaking wave and rough sea surface exhibits multiple scattering, which leads to the sea-spike phenomenon that the scattering result of horizontal (HH) polarization is larger than that of vertical (VV) polarization, especially at low-grazing-angle (LGA) incidents with upwind. The sea-spike phenomenon is also closely related to the location of strong scattering.


2021 ◽  
Vol 929 ◽  
Author(s):  
Qiang Gao ◽  
Grant B. Deane ◽  
Lian Shen

Air filaments and cavities in plunging breaking waves, generically cylinders, produce bubbles through an interface instability. The effects of gravity, surface tension and surface curvature on cylinder breakup are explored. A generalized dispersion relation is obtained that spans the Rayleigh–Taylor and Plateau–Rayleigh instabilities as cylinder radius varies. The analysis provides insight into the role of surface tension in the formation of bubbles from filaments and cavities. Small filaments break up into bubbles through a Plateau–Rayleigh instability driven through the action of surface tension. Large air cavities produce bubbles through a Rayleigh–Taylor instability driven by gravity and moderated by surface tension, which has a stabilizing effect. Surface tension, interface curvature and gravity are all important for cases between these two extremes. Predicted unstable mode wavenumber and bubble size show good agreement with direct numerical simulations of plunging breaking waves and air cylinders.


2021 ◽  
Vol 9 (11) ◽  
pp. 1208
Author(s):  
Kerry Black ◽  
Derick Steinhobel

This study reveals the coastal protection benefits of small artificial reefs on tropical islands. A monitored case study involving field and computer modelling investigations, as well as construction of a 95 m long reef and 12,000 m3 of local sand nourishment in a tropical lagoon on the north-east coast of Mauritius, is presented. Monitoring showed that a large salient widened the beach by 50 m in one year. The salient has continued to grow slowly and has remained stable for four years, including during a cyclone. Only a simple and inexpensive artificial reef was needed in the shallow lagoon to rebalance the shoreline wave conditions, because most wave energy was lost by breaking further offshore on the natural reef. With rising sea levels, inshore reefs with nourishment can overcome increases in wave height, wave set-up and wave run-up at the shoreline, which are jointly responsible for erosion and the flooding of homes by erosion and over-topping. To find suitable nourishment sources, regional computer modelling identified the following dominant circulation patterns: currents both coming into the lagoon over the reef crest (driven by breaking wave energy) and exiting via relict river channels or zones of lower waves. Sand for nourishment may be extracted from the exit locations with reduced environmental impact, because net currents are driving sand out of the lagoon system into deeper water. These relict sands have the same grain size as the natural beach and are readily accessible.


2021 ◽  
Vol 12 ◽  
Author(s):  
Victoria Rodriguez-Morrison ◽  
David Llewellyn ◽  
Youbin Zheng

Before ultraviolet (UV) radiation can be used as a horticultural management tool in commercial Cannabis sativa (cannabis) production, the effects of UV on cannabis should be vetted scientifically. In this study we investigated the effects of UV exposure level on photosynthesis, growth, inflorescence yield, and secondary metabolite composition of two indoor-grown cannabis cultivars: ‘Low Tide’ (LT) and ‘Breaking Wave’ (BW). After growing vegetatively for 2 weeks under a canopy-level photosynthetic photon flux density (PPFD) of ≈225 μmol⋅m–2⋅s–1 in an 18-h light/6-h dark photoperiod, plants were grown for 9 weeks in a 12-h light/12-h dark “flowering” photoperiod under a canopy-level PPFD of ≈400 μmol⋅m–2⋅s–1. Supplemental UV radiation was provided daily for 3.5 h at UV photon flux densities ranging from 0.01 to 0.8 μmol⋅m–2⋅s–1 provided by light-emitting diodes (LEDs) with a peak wavelength of 287 nm (i.e., biologically-effective UV doses of 0.16 to 13 kJ⋅m–2⋅d–1). The severity of UV-induced morphology (e.g., whole-plant size and leaf size reductions, leaf malformations, and stigma browning) and physiology (e.g., reduced leaf photosynthetic rate and reduced Fv/Fm) symptoms intensified as UV exposure level increased. While the proportion of the total dry inflorescence yield that was derived from apical tissues decreased in both cultivars with increasing UV exposure level, total dry inflorescence yield only decreased in LT. The total equivalent Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) concentrations also decreased in LT inflorescences with increasing UV exposure level. While the total terpene content in inflorescences decreased with increasing UV exposure level in both cultivars, the relative concentrations of individual terpenes varied by cultivar. The present study suggests that using UV radiation as a production tool did not lead to any commercially relevant benefits to cannabis yield or inflorescence secondary metabolite composition.


Sign in / Sign up

Export Citation Format

Share Document