scholarly journals Bifurcation, Traveling Wave Solutions, and Stability Analysis of the Fractional Generalized Hirota–Satsuma Coupled KdV Equations

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zhao Li ◽  
Peng Li ◽  
Tianyong Han

In this paper, the bifurcation, phase portraits, traveling wave solutions, and stability analysis of the fractional generalized Hirota–Satsuma coupled KdV equations are investigated by utilizing the bifurcation theory. Firstly, the fractional generalized Hirota–Satsuma coupled KdV equations are transformed into two-dimensional Hamiltonian system by traveling wave transformation and the bifurcation theory. Then, the traveling wave solutions of the fractional generalized Hirota–Satsuma coupled KdV equations corresponding to phase orbits are easily obtained by applying the method of planar dynamical systems; these solutions include not only the bell solitary wave solutions, kink solitary wave solutions, anti-kink solitary wave solutions, and periodic wave solutions but also Jacobian elliptic function solutions. Finally, the stability criteria of the generalized Hirota–Satsuma coupled KdV equations are given.

2016 ◽  
Vol 12 (3) ◽  
Author(s):  
Jiyu Zhong ◽  
Shengfu Deng

In this paper, we investigate the traveling wave solutions of a two-component Dullin–Gottwald–Holm (DGH) system. By qualitative analysis methods of planar systems, we investigate completely the topological behavior of the solutions of the traveling wave system, which is derived from the two-component Dullin–Gottwald–Holm system, and show the corresponding phase portraits. We prove the topological types of degenerate equilibria by the technique of desingularization. According to the dynamical behaviors of the solutions, we give all the bounded exact traveling wave solutions of the system, including solitary wave solutions, periodic wave solutions, cusp solitary wave solutions, periodic cusp wave solutions, compactonlike wave solutions, and kinklike and antikinklike wave solutions. Furthermore, to verify the correctness of our results, we simulate these bounded wave solutions using the software maple version 18.


2020 ◽  
Vol 30 (07) ◽  
pp. 2050109
Author(s):  
Jibin Li ◽  
Guanrong Chen ◽  
Jie Song

This paper studies the bifurcations of phase portraits for the regularized Saint-Venant equation (a two-component system), which appears in shallow water theory, by using the theory of dynamical systems and singular traveling wave techniques developed in [Li & Chen, 2007] under different parameter conditions in the two-parameter space. Some explicit exact parametric representations of the solitary wave solutions, smooth periodic wave solutions, periodic peakons, as well as peakon solutions, are obtained. More interestingly, it is found that the so-called [Formula: see text]-traveling wave system has a family of pseudo-peakon wave solutions, and their limiting solution is a peakon solution. In addition, it is found that the [Formula: see text]-traveling wave system has two families of uncountably infinitely many solitary wave solutions and compacton solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
A. R. Seadawy ◽  
K. El-Rashidy

An analytic study was conducted on coupled partial differential equations. We formally derived new solitary wave solutions of generalized coupled system of Zakharov-Kuznetsov (ZK) and KdV equations by using modified extended tanh method. The traveling wave solutions for each generalized coupled system of ZK and KdV equations are shown in form of periodic, dark, and bright solitary wave solutions. The structures of the obtained solutions are distinct and stable.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yao Long ◽  
Can Chen

By using the bifurcation theory of dynamic system, a generalization of KdV equation was studied. According to the analysis of the phase portraits, the existence of solitary wave, cusp wave, periodic wave, periodic cusp wave, and compactons were discussed. In some parametric conditions, exact traveling wave solutions of this generalization of the KdV equation, which are different from those exact solutions in existing references, were given.


2016 ◽  
Vol 26 (10) ◽  
pp. 1650175
Author(s):  
Wenjing Zhu ◽  
Jibin Li

In this paper, we consider the Burgers-[Formula: see text] equation. By using the method of dynamical systems, we obtain bifurcations of the phase portraits of the traveling wave system under different parameter conditions. Corresponding to some special level curves, we derive possible exact explicit parametric representations of solutions (containing periodic wave solutions, peakon solutions, periodic peakon solutions, solitary wave solutions and compacton solutions) under different parameter conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Wenbin Zhang ◽  
Jiangbo Zhou

We employ the bifurcation theory of planar dynamical system to investigate the traveling-wave solutions of the generalized Zakharov-Kuznetsov equation. Four important types of traveling wave solutions are obtained, which include the solitary wave solutions, periodic solutions, kink solutions, and antikink solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Kamruzzaman Khan ◽  
M. Ali Akbar ◽  
Norhashidah Hj. Mohd. Ali

The modified simple equation method is significant for finding the exact traveling wave solutions of nonlinear evolution equations (NLEEs) in mathematical physics. In this paper, we bring in the modified simple equation (MSE) method for solving NLEEs via the Generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony (GZK-BBM) equation and the right-handed noncommutative Burgers' (nc-Burgers) equations and achieve the exact solutions involving parameters. When the parameters are taken as special values, the solitary wave solutions are originated from the traveling wave solutions. It is established that the MSE method offers a further influential mathematical tool for constructing the exact solutions of NLEEs in mathematical physics.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250305 ◽  
Author(s):  
JIBIN LI ◽  
ZHIJUN QIAO

In this paper, we apply the method of dynamical systems to a generalized two-component Camassa–Holm system. Through analysis, we obtain solitary wave solutions, kink and anti-kink wave solutions, cusp wave solutions, breaking wave solutions, and smooth and nonsmooth periodic wave solutions. To guarantee the existence of these solutions, we give constraint conditions among the parameters associated with the generalized Camassa–Holm system. Choosing some special parameters, we obtain exact parametric representations of the traveling wave solutions.


2014 ◽  
Vol 6 (2) ◽  
pp. 273-284 ◽  
Author(s):  
K. Khan ◽  
M. A. Akbar

In this article, the modified simple equation (MSE) method has been executed to find the traveling wave solutions of the coupled (1+1)-dimensional Broer-Kaup (BK) equations and the dispersive long wave (DLW) equations. The efficiency of the method for finding exact solutions has been demonstrated. It has been shown that the method is direct, effective and can be used for many other nonlinear evolution equations (NLEEs) in mathematical physics. Moreover, this procedure reduces the large volume of calculations.  Keywords: MSE method; NLEE; BK equations; DLW equations; Solitary wave solutions. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i2.16671 J. Sci. Res. 6 (2), 273-284 (2014)  


Sign in / Sign up

Export Citation Format

Share Document