Constrained Economic Optimization of Shell-and-Tube Heat Exchangers Using a Self-Adaptive Multipopulation Elitist-Jaya Algorithm

Author(s):  
R. Venkata Rao ◽  
Ankit Saroj

This paper explores the use of a self-adaptive multipopulation elitist (SAMPE) Jaya algorithm for the economic optimization of shell-and-tube heat exchanger (STHE) design. Three different optimization problems of STHE are considered in this work. The same problems were earlier attempted by other researchers using genetic algorithm (GA), particle swarm optimization (PSO) algorithm, biogeography-based optimization (BBO), imperialist competitive algorithm (ICA), artificial bee colony (ABC), cuckoo-search algorithm (CSA), intelligence-tuned harmony search (ITHS), and cohort intelligence (CI) algorithm. The Jaya algorithm is a newly developed algorithm and it does not have any algorithmic-specific parameters to be tuned except the common control parameters of number of iterations and population size. The search mechanism of the Jaya algorithm is upgraded in this paper by using the multipopulation search scheme with the elitism. The SAMPE-Jaya algorithm is proposed in this paper to optimize the setup cost and operational cost of STHEs simultaneously. The performance of the proposed SAPME-Jaya algorithm is tested on four well-known constrained, ten unconstrained standard benchmark problems, and three STHE design optimization problems. The results of computational experiments proved the superiority of the proposed method over the latest reported methods used for the optimization of the same problems.

Author(s):  
Jiten Makadia ◽  
C.D. Sankhavara

Swarm Intelligence algorithms like PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization), ABC (Artificial Bee Colony), Glow-worm swarm Optimization, etc. have been utilized by researchers for solving optimization problems. This work presents the application of a novel modified EHO (Elephant Herding Optimization) for cost optimization of shell and tube heat exchanger. A comparison of the results obtained by EHO in two benchmark problems shows that it is superior to those obtained with genetic algorithm and particle swarm optimization. The overall cost reduction is 13.3 % and 9.68% for both the benchmark problem compared to PSO. Results indicate that EHO can be effectively utilized for solving real-life optimization problems.


2014 ◽  
Vol 596 ◽  
pp. 192-195
Author(s):  
Ping Zhang ◽  
Peng Sun ◽  
Yi Ning Zhang ◽  
Guo Jun Li

Recently, a new meta-heuristic optimization algorithm–harmony search (HS) was developed, which imitates the behaviors of music improvisation. Although several variants and an increasing number of applications have appeared, one of its main difficulties is how to select suitable parameter values. In this paper, a self-adaptive harmony search algorithm (SaHS) proposed. In this algorithm, we design a new parameter setting strategy to directly tune the parameters in the search process, and balance the process of exploitation and exploration. Finally, we use SaHS to solve unconstrained optimization problems so as to profoundly study and analyze the performance of the SaHS. The results show that the SaHS has better convergence accuracy than the other three harmony search algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Kaiping Luo

The harmony search algorithm is a music-inspired optimization technology and has been successfully applied to diverse scientific and engineering problems. However, like other metaheuristic algorithms, it still faces two difficulties: parameter setting and finding the optimal balance between diversity and intensity in searching. This paper proposes a novel, self-adaptive search mechanism for optimization problems with continuous variables. This new variant can automatically configure the evolutionary parameters in accordance with problem characteristics, such as the scale and the boundaries, and dynamically select evolutionary strategies in accordance with its search performance. The new variant simplifies the parameter setting and efficiently solves all types of optimization problems with continuous variables. Statistical test results show that this variant is considerably robust and outperforms the original harmony search (HS), improved harmony search (IHS), and other self-adaptive variants for large-scale optimization problems and constrained problems.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Shifeng Chen ◽  
Rong Chen ◽  
Jian Gao

The Vehicle Routing Problem (VRP) is a classical combinatorial optimization problem. It is usually modelled in a static fashion; however, in practice, new requests by customers arrive after the initial workday plan is in progress. In this case, routes must be replanned dynamically. This paper investigates the Dynamic Vehicle Routing Problem with Time Windows (DVRPTW) in which customers’ requests either can be known at the beginning of working day or occur dynamically over time. We propose a hybrid heuristic algorithm that combines the harmony search (HS) algorithm and the Variable Neighbourhood Descent (VND) algorithm. It uses the HS to provide global exploration capabilities and uses the VND for its local search capability. In order to prevent premature convergence of the solution, we evaluate the population diversity by using entropy. Computational results on the Lackner benchmark problems show that the proposed algorithm is competitive with the best existing algorithms from the literature.


Sign in / Sign up

Export Citation Format

Share Document