Verification of a Total Lagrangian ANCF Solution Procedure for Fluid–Structure Interaction Problems

Author(s):  
Emanuele Grossi ◽  
Ahmed A. Shabana

The objective of this investigation is to verify a new total Lagrangian continuum-based fluid model that can be used to solve two- and three-dimensional fluid–structure interaction problems. Large rotations and deformations experienced by the fluid can be captured effectively using the finite element (FE) absolute nodal coordinate formulation (ANCF). ANCF elements can describe arbitrarily complex fluid shapes without imposing any restriction on the amount of rotation and deformation within the finite element, ensure continuity of the time-rate of position vector gradients at the nodal points, and lead to a constant mass matrix regardless of the magnitude of the fluid displacement. Fluid inertia forces are computed, considering the change in the fluid geometry as the result of the large displacements. In order to verify the ANCF solution, the dam-break benchmark problem is solved in the two- and three-dimensional cases. The motion of the fluid free surface is recorded before and after the impact on a vertical wall placed at the end of the dam dry deck. The results are in good agreement with those obtained by other numerical methods. The results obtained in this investigation show that the number of degrees-of-freedom (DOF) required for ANCF convergence is around one order of magnitude less than what is required by other existing methods. Limitations and advantages of the verified ANCF fluid model are discussed.

Author(s):  
Shuo Yang ◽  
Raymond K. Yee

As a common phenomenon in liquid motions, sloshing usually happens in a partially filled liquid tank of moving vehicle or structure. The objectives of this paper are to study sloshing behavior in rigid tank and deformable tank, and to develop a better performance baffle design in the tank under seismic excitations. The tank is surged with a sinusoidal oscillation about horizontal x-direction. The hydro-elasticity effect of sloshing pressure on the tank wall was taken into consideration due to the fluid-structure interaction between impact pressures and tank structures. ABAQUS finite element program using Coupled Eulerian-Lagrangian (CEL) technique was employed to simulate fluid sloshing. The sloshing phenomenon was studied in rigid tank and deformable tank models with three different water levels, and the effect of wall thickness of the deformable tank on sloshing behavior was discussed. One way to minimize the effect of sloshing in a tank, baffles are used and installed in the middle of the tank, and then various heights and material types of baffle were evaluated. The simulation results show that higher water level case creates greater pressure impact on the tank wall than lower water level case, and the elasticity of the tank structure would reduce the impact pressure of the wall. For the simulation tank model with size of 1m (H) × 1m (W) × 0.2m (D), better performance baffle was found to be the one with the height of 0.35m and was made of acrylic material. Moreover, the conclusion of this study can be extrapolated to other dimensions of the model based on similarity theory. This paper also can serve as an aid in further studying sloshing phenomenon. The findings of this study can be applied to restrain or minimize sloshing motions inside a tank.


Author(s):  
C. W. S. To ◽  
M. A. O’Grady

Abstract A double asymptotic approximation based finite element-cum-boundary element approach for fluid-structure interaction problems is being proposed. In particular a staggered solution scheme has been applied to the analysis of various coupled fluid-structure systems. A stabilization scheme by reformulation, proposed by DeRuntz et al. was employed to circumvent the instability problem. In addition, the singularity in the excitation term was eliminated through a variable transformation as suggested by Everstine. Another feature of the present work is its incorporation of the hybrid strain based lower order triangular shell finite element developed by To and Liu. The eigenvalue solution exhibits high convergence rate for the particular shell finite element employed. The responses calculated exhibit the effectiveness of the proposed approach with application of the aforementioned shell finite element in dealing with three dimensional fluid-structure interaction problems. The reduction in problem size that this approach affords allows these complex interaction problems to be dealt with in a desktop engineering workstation environment, as opposed to the mainframe and supercomputer arenas where they have been implemented in the past.


Author(s):  
Bhuiyan Shameem Mahmood Ebna Hai ◽  
Markus Bause

Advanced composite materials such as Carbon Fiber Reinforced Plastics (CFRP) are being applied to many aircraft structures in order to improve performance and reduce weight. Most composites have strong, stiff fibers in a matrix which is weaker and less stiff. However, aircraft wings can break due to Fluid-Structure Interaction (FSI) oscillations or material fatigue. This paper focuses on the analysis of a non-linear fluid-structure interaction problem and its solution in the finite element software package DOpElib: the deal.II based optimization library. The principal aim of this research is to explore and understand the behaviour of the fluid-structure interaction during the impact of a deformable material (e.g. an aircraft wing) on air. Here we briefly describe the analysis of incompressible Navier-Stokes and Elastodynamic equations in the arbitrary Lagrangian-Eulerian (ALE) frameworks in order to numerically simulate the FSI effect on a double wedge airfoil. Since analytical solutions are only available in special cases, the equation needs to be solved by numerical methods. This coupled problem is defined in a monolithic framework and fractional-step-θ time stepping scheme are implemented. Spatial discretization is based on a Galerkin finite element scheme. The non-linear system is solved by a Newton method. The implementation using the software library package DOpElib and deal.II serves for the computation of different fluid-structure configurations.


1981 ◽  
Vol 103 (2) ◽  
pp. 183-190 ◽  
Author(s):  
R. F. Kulak

In this paper a development is presented for a three-dimensional hexahedral hydrodynamic finite-element. Using trilinear shape functions and assuming a constant pressure field in each element, simple relations were obtained for internal nodal forces. Because the formulation was based upon a rate approach it was applicable to problems involving large displacements. This element was incorporated into an existing plate-shell finite element code. Diagonal mass matrices were used and the resulting discrete equations of motion were solved using an explicit temporal integrator. Results for several problems were presented which compare numerical predictions to closed form analytical solutions. In addition, the fluid-structure interaction problem of a fluid-filled, cylindrical vessel containing internal cylinders was studied. The internal cylinders were cantilever supported from the top cover of the vessel and were periodically located circumferentially at a fixed radius. A pressurized cylindrical cavity located at the bottom of the vessel at its centerline provided the loading.


2007 ◽  
Vol 2 (4) ◽  
pp. 366-373 ◽  
Author(s):  
Li Zheng ◽  
Jin Xiang-long ◽  
Chen Xiang-dong

The crashworthiness of a dual layer fuel tank, with the outer layer made of metal and the inner layer made of woven fabric composite material, is fundamental for the survivability of an impact with the ground in emergency. In this research, the simulation of a three-dimensional dual layer fuel tank in the impact with the ground is achieved through the multimaterial arbitrary Lagrangian-Eulerian (ALE) finite element method because of its ability to control mesh geometry independently of geometry. At the same time, the naked flexible tank in the impact with the ground is simulated for the evaluation of the outer metal tank. The ALE description is adopted for the fluid domain, while for the structural domain the Lagrangian formulation is considered. The computation of the fluid-structure interaction and the impact contact between the tank and the ground are realized by the penalty-based coupling method. Then, the dynamic behaviors of the dual layer fuel tank and the naked flexible tank in the impact are analyzed. In the meantime, the parallelism of the dual layer fuel tank is discussed because the computation of the fluid-structure interaction and the impact contact is quite time consuming. Based on domain decomposition, the recursive coordinate bisection (RCB) is improved according to the time-consuming characteristics of fluid-filled tank in the impact. The result indicates, comparing with the RCB algorithm, that the improved recursive coordinate bisection algorithm has improved the speedup and parallel efficiency.


Author(s):  
Kunlun Liu ◽  
Victor H. Barocas

A numerical method is presented for calculating 3-D unsteady flow through bileaflet heart valves and flexible obstruction. The method combines finite volume, finite element, and overlapping grid methods. The employed overlapping grid method decomposed the entire domain into the solid region, the fluid region in the vicinity of the solid (the inner region), and the outer fluid region. A finite volume scheme was implemented for the outer fluid region, while a finite element scheme was employed in the solid and inner fluid regions. Calculations were carried out for the full 3-D valve geometry under steady inflow conditions with the Reynolds number ranging from 400 to 1200. The numerical results illustrate the evolution of the downstream vortices. The changes in the location and size of the reattachment vortices in response to the change of elastic modulus of solid and Reynolds number of fluids were recorded and tabulated. The results provide the detailed information sketching the evolution of the fluid-structure interaction in terms of the modes and amplitude.


Sign in / Sign up

Export Citation Format

Share Document