structural domain
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 66)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhaohai Wen ◽  
Muhammad Tahir Aleem ◽  
Kalibixiati Aimulajiang ◽  
Cheng Chen ◽  
Meng Liang ◽  
...  

Trehalose phosphate synthase (TPS), a key enzyme in trehalose synthesis, is not present in mammals but critical to the viability of a wide range of lower organisms. However, almost nothing is known about the function of Hc-TPS (GT1-TPS structural domain protein from Haemonchus contortus). In this study, Hc-TPS gene was cloned and the recombinant protein (rHc-TPS) was expressed and purified. The quantitative real-time PCR (qPCR) results showed that Hc-TPS was transcribed at different stages of H. contortus, with higher levels of transcription at the molting and embryo stages. Immunofluorescence analysis showed that Hc-TPS was widely distributed in adults, but the expression was mainly localized on the mucosal surface of the intestine as well as in the embryos of female worms. The impacts of rHc-TPS on peripheral blood mononuclear cell (PBMC) proliferation, nitric oxide (NO) generation, transcriptional expression of cytokines, and related pathways were examined by co-incubating rHc-TPS with goat PBMCs. The results showed that rHc-TPS significantly inhibited PBMC proliferation and NO secretion in a dose-dependent manner. We also found that rHc-TPS activated the interleukin (IL)-10/signal transducer and activator of transcription 3/suppressor of cytokine signaling 3 (IL-10/STAT3/SOCS3) axis and significantly promoted SOCS3 expression, while inhibiting interferon-gamma (INF-γ), IL-4, IL-9, and IL-2 pathways. Our findings may contribute to understanding the immune evasion mechanism for the parasite during host–parasite interactions and also help to provide ideas for discovering new drug targets.


2021 ◽  
Vol 23 (1) ◽  
pp. 53
Author(s):  
Manuel Fuentes ◽  
Sanjeeva Srivastava ◽  
Angela M. Gronenborn ◽  
Joshua LaBaer

Understanding transient protein interactions biochemically at the proteome scale remains a long-standing challenge. Current tools developed to study protein interactions in high-throughput measure stable protein complexes and provide binary readouts; they do not elucidate dynamic and weak protein interactions in a proteome. The majority of protein interactions are transient and cover a wide range of affinities. Nucleic acid programmable protein arrays (NAPPA) are self-assembling protein microarrays produced by freshly translating full-length proteins in situ on the array surface. Herein, we have coupled NAPPA to surface plasmon resonance imaging (SPRi) to produce a novel label-free platform that measures many protein interactions in real-time allowing the determination of the KDs and rate constants. The developed novel NAPPA-SPRi technique showed excellent ability to study protein-protein interactions of clinical mutants of p53 with its regulator MDM2. Furthermore, this method was employed to identify mutant p53 proteins insensitive to the drug nutlin-3, currently in clinical practice, which usually disrupts the p53-MDM2 interactions. Thus, significant differences in the interactions were observed for p53 mutants on the DNA binding domain (Arg-273-Cys, Arg-273-His, Arg-248-Glu, Arg-280-Lys), on the structural domain (His-179-Tyr, Cys-176-Phe), on hydrophobic moieties in the DNA binding domain (Arg-280-Thr, Pro-151-Ser, Cys-176-Phe) and hot spot mutants (Gly-245-Cys, Arg-273-Leu, Arg-248-Glu, Arg-248-Gly), which signifies the importance of point mutations on the MDM2 interaction and nutlin3 effect, even in molecular locations related to other protein activities.


2021 ◽  
Author(s):  
Yong Wei ◽  
Alexandra Ahlner ◽  
Cornelia Redel ◽  
Alexander Lemak ◽  
Isak Johansson-Åkhe ◽  
...  

SummaryDespite MYC dysregulation in most human cancers, strategies to target this potent oncogenic driver remains an urgent unmet need. Recent evidence shows the PP1 phosphatase and its regulatory subunit PNUTS control MYC phosphorylation and stability, however the molecular basis remains unclear. Here we demonstrate that MYC interacts directly with PNUTS through the MYC homology Box 0 (MB0), a highly conserved region recently shown to be important for MYC oncogenic activity. MB0 interacts with PNUTS residues 1-148, a functional unit here termed, PNUTS amino-terminal domain (PAD). Using NMR spectroscopy we determined the solution structure of PAD, and characterised its interaction with MYC. Point mutations of residues at the MYC-PNUTS interface significantly weaken their interaction both in vitro and in vivo. These data demonstrate the MB0 binding pocket of the PAD represents an attractive site for pharmacological disruption of the MYC-PNUTS interaction.In BriefSolving the structure of MYC-PNUTS direct interaction reveals how the intrinsically disordered MYC-Box0 (MB0) region anchors into a binding pocket in the N-terminal PAD domain of PNUTS. These data provide insight into the molecular mechanism of how the PNUTS:PP1 phosphatase complex regulates MYC phosphorylation.HighlightsA region critical for MYC oncogenesis, MYC-Box0 (MB0), directly interacts with PNUTSPNUTS amino-terminal domain (PAD) is a structural domain that interacts with MYC MB0Mutation of single residues at the interaction interface disrupts MYC-PNUTS binding in cellsMYC-PNUTS binding releases MYC intramolecular interactions to enable PP1substrate access


2021 ◽  
Author(s):  
Omer Ziv ◽  
Svetlana Farberov ◽  
Jian You Lau ◽  
Eric A Miska ◽  
Grzegorz Kudla ◽  
...  

It is increasingly appreciated that long non-coding RNAs (lncRNAs) carry out important functions in mammalian cells, but how these are encoded in their sequences and manifested in their structures remains largely unknown. Some lncRNAs bind to and modulate the availability of RNA binding proteins, but the structural principles that underlie this mode of regulation are underexplored. Here, we focused on the NORAD lncRNA, which binds Pumilio proteins and modulates their ability to repress hundreds of mRNA targets. We probed the RNA structure and long-range RNA-RNA interactions formed by NORAD inside cells, under different stressful conditions. We discovered that NORAD structure is highly modular, and consists of well-defined domains that contribute independently to NORAD function. We discovered that NORAD structure spatially clusters the Pumilio binding sites along NORAD in a manner that contributes to the de-repression of Pumilio target proteins. Following arsenite stress, the majority of NORAD structure undergoes relaxation and forms inter-molecular interactions with RNAs that are targeted to stress granules. NORAD sequence thus dictates elaborated structural domain organization that facilitates its function on multiple levels, and which helps explain the extensive evolutionary sequence conservation of NORAD regions that are not predicted to directly bind Pumilio proteins.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Motohiro Sekiya ◽  
Kenta Kainoh ◽  
Takehito Sugasawa ◽  
Ryunosuke Yoshino ◽  
Takatsugu Hirokawa ◽  
...  

AbstractBiological systems to sense and respond to metabolic perturbations are critical for the maintenance of cellular homeostasis. Here we describe a hepatic system in this context orchestrated by the transcriptional corepressor C-terminal binding protein 2 (CtBP2) that harbors metabolite-sensing capabilities. The repressor activity of CtBP2 is reciprocally regulated by NADH and acyl-CoAs. CtBP2 represses Forkhead box O1 (FoxO1)-mediated hepatic gluconeogenesis directly as well as Sterol Regulatory Element-Binding Protein 1 (SREBP1)-mediated lipogenesis indirectly. The activity of CtBP2 is markedly defective in obese liver reflecting the metabolic perturbations. Thus, liver-specific CtBP2 deletion promotes hepatic gluconeogenesis and accelerates the progression of steatohepatitis. Conversely, activation of CtBP2 ameliorates diabetes and hepatic steatosis in obesity. The structure-function relationships revealed in this study identify a critical structural domain called Rossmann fold, a metabolite-sensing pocket, that is susceptible to metabolic liabilities and potentially targetable for developing therapeutic approaches.


Author(s):  
P. Dhasarathan ◽  
Mohamad S AlSalhi ◽  
Sandhanasamy Devanesan ◽  
Jeeva Subbiah ◽  
A.J.A. Ranjitsingh ◽  
...  

10.4194/afs37 ◽  
2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Moslema Jahan Mou ◽  
Sk Injamamul Islam ◽  
Sarower Mahfuj

Unknown or hypothetical proteins exist, but they have yet to be identified or correlated to gene sequences. Domains of unknown function are proteins that have been identified experimentally but do not have a known functional or structural domain. Using a variety of computational approaches and tools, this research investigated and characterized the likely functional characteristics of a hypothetical protein from Vibrio parahaemolyticus (Accession no. QOS18375.1). The physicochemical characteristics, subcellular localization, three-dimensional structure, protein-protein interactions, and functional elucidation of the protein are all available from this in silico perspective. Protein-protein interactions are investigated using the STRING software and resulted that VP128 putative protein interacts strongly with the GlpX type protein Fructose-1,6-bisphosphatase. The in-silico investigation documented the protein’s hydrophilic nature with predominantly alpha (α) helices in its secondary structure. Furthermore, the protein, according to the research, features a VP128 domain and is thought to bind ribosomal subunits and the top active sites of the model described also. Therefore, the research findings will facilitate the development of new antibacterial drugs against acute gastroenteritis and other serious diseases by providing a better knowledge of the role of VP128 domain.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kotaro Akaki ◽  
Kosuke Ogata ◽  
Yuhei Yamauchi ◽  
Noriki Iwai ◽  
Ka Man Tse ◽  
...  

Regnase-1 is an endoribonuclease crucial for controlling inflammation by degrading mRNAs encoding cytokines and inflammatory mediators in mammals. However, it is unclear how Regnase-1-mediated mRNA decay is controlled in interleukin (IL)-1β- or Toll-like receptor (TLR) ligand-stimulated cells. Here, by analyzing the Regnase-1 interactome, we found that IL-1β or TLR stimulus dynamically induced the formation of Regnase-1-β-transducin repeat-containing protein (βTRCP) complex. Importantly, we also uncovered a novel interaction between Regnase-1 and 14-3-3 in both mouse and human cells. In IL-1R/TLR-stimulated cells, the Regnase-1-14-3-3 interaction is mediated by IRAK1 through a previously uncharacterized C-terminal structural domain. Phosphorylation of Regnase-1 at S494 and S513 is critical for Regnase-1-14-3-3 interaction, while a different set of phosphorylation sites of Regnase-1 is known to be required for the recognition by βTRCP and proteasome-mediated degradation. We found that Regnase-1-14-3-3 and Regnase-1-βTRCP interactions are not sequential events. Rather, 14-3-3 protects Regnase-1 from βTRCP-mediated degradation. On the other hand, 14-3-3 abolishes Regnase-1-mediated mRNA decay by inhibiting Regnase-1-mRNA association. In addition, nuclear-cytoplasmic shuttling of Regnase-1 is abrogated by 14-3-3 interaction. Taken together, the results suggest that a novel inflammation-induced interaction of 14-3-3 with Regnase-1 stabilizes inflammatory mRNAs by sequestering Regnase-1 in the cytoplasm to prevent mRNA recognition.


2021 ◽  
Vol 26 ◽  
pp. 643-656
Author(s):  
Amichai Mitelman ◽  
Ury Gurevich

The topic of Building Information Modelling (BIM) adoption by public organizations has become a central subject of research, and a significant amount of BIM documents, guidelines, and standards have been created to meet different organizational purposes. Compared to the building industry, the application of BIM tools for tunnel project management is lagging far behind. This paper proposes a methodology for integrating BIM tools for conventional tunnelling. A fundamental distinction is made between the tunnel internal architectural domain and the external structural domain. For the former, BIM methodology can be applied similarly to the building industry. For the latter, it is suggested that a BIM model be built according to the essential information generated during tunnelling excavation. The proposed methodology was put to test for an actual tunneling project. A routine was established where the supervisor on behalf of the owner was responsible for gathering and reporting essential data in tabular form. Via REVIT's Application Programming Interface (API), a code was developed so that a BIM model was built and updated automatic to data insertion. Ultimately, the final BIM model allows managing up-to-date qualitative and quantitative information visually. Thus, human understanding and interpretation are enhanced for future uses, such as maintenance, future renovations and project post-analysis.


2021 ◽  
Vol 118 (38) ◽  
pp. e2110991118
Author(s):  
Kushagra Bansal ◽  
Daniel A. Michelson ◽  
Ricardo N. Ramirez ◽  
Aaron D. Viny ◽  
Ross L. Levine ◽  
...  

Aire controls immunological tolerance by driving promiscuous expression of a large swath of the genome in medullary thymic epithelial cells (mTECs). Its molecular mechanism remains enigmatic. High-resolution chromosome-conformation capture (Hi-C) experiments on ex vivo mTECs revealed Aire to have a widespread impact on higher-order chromatin structure, disfavoring architectural loops while favoring transcriptional loops. In the presence of Aire, cohesin complexes concentrated on superenhancers together with mediator complexes, while the CCCTC-binding factor (CTCF) was relatively depleted from structural domain boundaries. In particular, Aire associated with the cohesin loader, NIPBL, strengthening this factor’s affiliation with cohesin’s enzymatic subunits. mTEC transcripts up-regulated in the presence of Aire corresponded closely to those down-regulated in the absence of one of the cohesin subunits, SA-2. A mechanistic model incorporating these findings explains many of the unusual features of Aire’s impact on mTEC transcription, providing molecular insight into tolerance induction.


Sign in / Sign up

Export Citation Format

Share Document