Pressure-Transient Behavior of Multisegment Horizontal Wells With Nonuniform Production: Theory and Case Study

2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Youwei He ◽  
Shiqing Cheng ◽  
Jiazheng Qin ◽  
Yang Wang ◽  
Zhiming Chen ◽  
...  

Field data indicate production profile along horizontal wells is nonuniform. This paper develops an analytical model of multisegment horizontal wells (MSHWs) to estimate rate distribution along horizontal wellbore, interpret the effective producing length (EPL), and identify underperforming horizontal sections using bottom-hole pressure (BHP) data. Pressure solutions enable to model an MSHW with nonuniform distribution of length, spacing, rate, and skin factor. The solution is verified with the analytical solution in commercial software. Type curves are generated to analyze the pressure-transient behavior. The second radial-flow (SRF) occurs for the MSHWs, and the duration of SRF depends on interference between segments. The pressure-derivative curve during SRF equals to 0.5/Np (Np denotes the number of mainly producing segments (PS)) under weak interference between segments. The calculated average permeability may be Np times lower than accurate value when the SRF is misinterpreted as pseudoradial-flow regime. The point (0, 0, h/2) are selected as the reference point, and symmetrical cases will generate different results, enabling us to distinguish them. Finally, field application indicates the potential practical application to identify the underperforming horizontal segments.

Author(s):  
Juan Camilo Sepúlveda ◽  
Sebastián Díaz ◽  
Edwin Alexander López

Abstract: Coal bed methane (CBM) reservoirs are complex systems whose properties differ from those of conventional reservoirs. Coal seams are dual-porosity systems that comprise the porosities of the matrix and cleat system. Gas in the coal seams can be stored as free gas in the cleat system and as adsorbed gas in the porous medium. The flow mechanisms of the natural gas through the formation include desorption, diffusion, and Darcy’s flow regimes. The permeability of CBM reservoirs is more sensitive to pressure variations than conventional gas reservoirs. To study the flow behavior of CBM reservoirs it is mandatory to use a model that considers their unique characteristics. The objective of this study was to propose a physical and mathematical model of production performance for horizontal wells in CBM reservoirs whose permeability is dependent on pressure. A solution for the model was obtained by applying Pedrosa´s transformation, perturbation theory, Laplace transformation, the point source method, and Sthefest´s algorithm. The solution to this problem was validated with previous work thoroughly. The type curves of the model were built and the pressure transient behavior of the model was analyzed and discussed. The effects of several parameters on pressure behavior were also discussed.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Ruizhong Jiang ◽  
Xiuwei Liu ◽  
Yongzheng Cui ◽  
Xing Wang ◽  
Yue Gao ◽  
...  

Abstract Coal bed methane (CBM) significantly contributes to unconventional energy resources. With the development of the drilling technology, multi-branched horizontal wells (MBHWs) have been put into the exploitation of CBM. In this paper, a semi-analytical mathematical model is introduced to study the production characteristics of MBHWs in the composite CBM reservoir. Stress sensitivity, composite reservoir, and complex seepage mechanisms (desorption, diffusion, and Darcy flow) are taken into consideration. Through Pedrosa transformation, Perturbation transformation, Laplace transformation, Finite cosine transformation, element discretization, superposition principle, and Stehfest numerical inversion, pseudo-pressure dynamic curves and production decline curves are plotted and 13 flow regimes are divided. Then, the sensitivity analysis of related parameters is conducted to study the influences of these parameters based on these two type curves. Model verification and field application are introduced which shows that the model is reliable. The model proposed in this paper and relevant results analysis can provide some significant guidance for a better understanding of the production behavior of MBHWs in the composite CBM reservoir.


1991 ◽  
Vol 6 (01) ◽  
pp. 86-94 ◽  
Author(s):  
F.J. Kuchuk ◽  
P.A. Goode ◽  
D.J. Wilkinson ◽  
R.K.M. Thambynayagam

Sign in / Sign up

Export Citation Format

Share Document