fluid interfaces
Recently Published Documents


TOTAL DOCUMENTS

851
(FIVE YEARS 136)

H-INDEX

65
(FIVE YEARS 10)

2021 ◽  
pp. 117357
Author(s):  
Andreas Schulz ◽  
Christian Wecker ◽  
Venkatesh Inguva ◽  
Alexey S. Lopatin ◽  
Eugeny Y. Kenig

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Charles Maldarelli ◽  
Nicole T. Donovan ◽  
Subramaniam Chembai Ganesh ◽  
Subhabrata Das ◽  
Joel Koplik

Colloid-sized particles (10 nm–10 μm in characteristic size) adsorb onto fluid interfaces, where they minimize their interfacial energy by straddling the surface, immersing themselves partly in each phase bounding the interface. The energy minimum achieved by relocation to the surface can be orders of magnitude greater than the thermal energy, effectively trapping the particles into monolayers, allowing them freedom only to translate and rotate along the surface. Particles adsorbed at interfaces are models for the understanding of the dynamics and assembly of particles in two dimensions and have broad technological applications, importantly in foam and emulsion science and in the bottom-up fabrication of new materials based on their monolayer assemblies. In this review, the hydrodynamics of the colloid motion along the surface is examined from both continuum and molecular dynamics frameworks. The interfacial energies of adsorbed particles is discussed first, followed by the hydrodynamics, starting with isolated particles followed by pairwise and multiple particle interactions. The effect of particle shape is emphasized, and the role played by the immersion depth and the surface rheology is discussed; experiments illustrating the applicability of the hydrodynamic studies are also examined. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Mingxuan Jiang ◽  
Juan D. Olarte-Plata ◽  
Fernando Bresme

The Interfacial Thermal Conductance (ITC) is a fundamental property of materials and has particular relevance at the nanoscale. The ITC quantifies the thermal resistance between materials of different compositions or between fluids in contact with materials. Furthermore, the ITC determines the rate of cooling/heating of the materials and the temperature drop across the interface. Here we propose a method to compute local ITCs and temperature drops of nanoparticle-fluid interfaces. Our approach resolves the ITC at the atomic level using the atomic coordinates of the nanomaterial as nodes to compute local thermal transport properties. We obtain high-resolution descriptions of the interfacial thermal transport by combining the atomistic nodal approach, computational geometry techniques and "computational farming'' using Non-Equilibrium Molecular Dynamics simulations. We illustrate our method by analyzing various nanoparticles as a function of their size and geometry, targeting experimentally relevant structures like capped octagonal rods, cuboctahedrons, decahedrons, rhombic dodecahedrons, cubes, icosahedrons, truncated octahedrons, octahedrons and spheres. We show that the ITC of these very different geometries can be accurately described in terms of the local coordination number of the atoms in the nanoparticle surface. Nanoparticle geometries with lower surface coordination numbers feature higher ITCs, and the ITC generally increases with decreasing particle size.


Sign in / Sign up

Export Citation Format

Share Document