A Methodology Based on Structural Finite Element Method-Boundary Element Method and Acoustic Boundary Element Method Models in 2.5D for the Prediction of Reradiated Noise in Railway-Induced Ground-Borne Vibration Problems

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Dhananjay Ghangale ◽  
Aires Colaço ◽  
Pedro Alves Costa ◽  
Robert Arcos

This work is focused on the analysis of noise and vibration generated in underground railway tunnels due to train traffic. Specifically, an analysis of noise and vibration generated by train passage in an underground simple tunnel in a homogeneous full-space is presented. In this methodology, a two-and-a-half-dimensional coupled finite element and boundary element method (2.5D FEM-BEM) is used to model soil–structure interaction problems. The noise analysis inside the tunnel is performed using a 2.5D acoustic BEM considering a weak coupling. The method of fundamental solutions (MFS) is used to validate the acoustic BEM methodology. The influence of fastener stiffness on vibration and noise characteristic inside a simple tunnel is investigated.

2011 ◽  
Vol 2011 ◽  
pp. 1-26 ◽  
Author(s):  
António Tadeu ◽  
Igor Castro

This paper simulates wave propagation in an elastic medium containing elastic, fluid, rigid, and empty heterogeneities, which may be thin. It uses a coupling formulation between the boundary element method (BEM)/the traction boundary element method (TBEM) and the method of fundamental solutions (MFS). The full domain is divided into subdomains, which are handled separately by the BEM/TBEM or the MFS, to overcome the specific limitations of each of these methods. The coupling is enforced by applying the prescribed boundary conditions at all medium interfaces. The accuracy, efficiency, and stability of the proposed algorithms are verified by comparing the results with reference solutions. The paper illustrates the computational efficiency of the proposed coupling formulation by computing the CPU time and the error. The transient analysis of wave propagation in the presence of a borehole driven in a cracked medium is used to illustrate the potential of the proposed coupling formulation.


Author(s):  
T. E. Dyhoum ◽  
D. Lesnic ◽  
R. G. Aykroyd

This paper discusses solving the forward problem for electrical resistance tomography (ERT). The mathematical model is governed by Laplace's equation with the most general boundary conditions forming the so-called complete electrode model (CEM). We examine this problem in simply-connected and multiply - connected domains (rigid inclusion, cavity and composite bi-material). This direct problem is solved numerically using the boundary element method (BEM) and the method of fundamental solutions (MFS). The resulting BEM and MFS solutions are compared in terms of accuracy, convergence and stability. Anticipating the findings, we report that the BEM provides a convergent and stable solution, whilst the MFS places some restrictions on the number and location of the source points.


1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


1993 ◽  
Vol 115 (3) ◽  
pp. 262-267 ◽  
Author(s):  
J. Q. Ye

The postbuckling behavior of thin plates under combined loads is studied in this paper by using a mixed boundary element and finite element method. The transverse and the in-plane deformation of the plates are analyzed by the boundary element method and the finite element method, respectively. Spline functions were used as the interpolation functions and shape functions in the solution of both methods. A quadratic rectangular spline element is adopted in the finite element procedure. Numerical results are given for typical problems to show the effectiveness of the proposed approach. The possibilities to extend the method developed in this paper to more complicated postbuckling problems are discussed in the concluding section.


Sign in / Sign up

Export Citation Format

Share Document