The Vector Bond Graph Method for the Dynamic Modeling of 3-RSR Spatial Parallel Robot Mechanism

2020 ◽  
Vol 26 (9) ◽  
pp. 2847-2855
Author(s):  
Yizhou Long ◽  
Yupei Zhao ◽  
Shizhou Lu ◽  
Jun Gao ◽  
Pan Qu ◽  
...  

Author(s):  
Harsh Atul Godbole ◽  
Ryan James Caverly ◽  
James Richard Forbes

This paper investigates the dynamic modeling and adaptive control of a single degree-of-freedom flexible cable-driven parallel robot (CDPR). A Rayleigh–Ritz cable model is developed that takes into account the changes in cable mass and stiffness due to its winding and unwinding around the actuating winch, with the changes distributed throughout the cables. The model uses a set of state-dependent basis functions for discretizing cables of varying length. A novel energy-based model simplification is proposed to further facilitate reduction in the computational load when performing numerical simulations involving the Rayleigh–Ritz model. For control purposes, the massive payload assumption is used to decouple the rigid and elastic dynamics of the system, and a modified input torque and modified output payload rate are used to develop a passive input–output map for the naturally noncollocated system. A passivity-based adaptive control law is derived to dynamically adapt to changes in cable properties and payload inertia, and different forms of the adaptive control law regressor are proposed. It is shown through numerical simulations that the adaptive controller is robust to changes in payload mass and cable properties, and the selection of the regressor form has a significant impact on the performance of the controller.


Author(s):  
Ke Zhang

A hybrid five bar mechanism is a typical planar parallel robot. It is a configuration that combines the motions of two characteristically different motors by means of a five bar mechanism to produce programmable output. Hybrid five bar mechanism is the most representative one of hybrid mechanism. In this paper, considering the bond graph can provide a compact and versatile representation for kinematics and dynamics of hybrid mechanism, the dynamics analysis for a hybrid five-bar mechanism based on power bond graph theory is introduced. Then an optimization design of hybrid mechanism is performed with reference to dynamic objective function. By the use of the properties of global search of genetic algorithm (GA), an improved GA algorithm is proposed based on real-code. Optimum dimensions are obtained assuming there are no dimensional tolerances or clearances. Finally, a numerical example is carried out, and the simulation result shows that the optimization method is feasible and satisfactory in the design of hybrid mechanism.


Sign in / Sign up

Export Citation Format

Share Document