Advances in the Numerical Integration of the 3-D Euler Equations in Vibrating Cascades

Author(s):  
Georg A. Gerolymos

In the present work an algorithm for the numerical integration of the 3-D unsteady Euler equations in vibrating transonic compressor cascades is described. The equations are discretized in finite-volume formulation in a mobile grid using isoparametric brick elements. They are integrated in time using Runge-Kutta schemes. A thorough discussion of the boundary-conditions used and of their infuence on results is undertaken. The influence of grid refinement on computational results is examined. Unsteady convergence of results is discussed.

1993 ◽  
Vol 115 (4) ◽  
pp. 781-790 ◽  
Author(s):  
G. A. Gerolymos

In the present work an algorithm for the numerical integration of the three-dimensional unsteady Euler equations in vibrating transonic compressor cascades is described. The equations are discretized in finite-volume formulation in a mobile grid using isoparametric brick elements. They are integrated in time using Runge-Kutta schemes. A thorough discussion of the boundary conditions used and of their influence on results is undertaken. The influence of grid refinement on computational results is examined. Unsteady convergence of results is discussed.


2018 ◽  
Vol 180 ◽  
pp. 02051
Author(s):  
Martin Kyncl ◽  
Jaroslav Pelant

Here we work with the system of equations describing the non-stationary compressible turbulent multi-component flow in the gravitational field. We focus on the numerical simulation of the fan situated inside the high hall. The RANS equations are discretized with the use of the finite volume method. The original modification of the Riemann problem and its solution is used at the boundaries. The combination of specific boundary conditions is used for the simulation of the fan. The presented computational results are computed with own-developed code (C, FORTRAN, multiprocessor, unstructured meshes in general).


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 912-918
Author(s):  
M. E. Hayder ◽  
Fang Q. Hu ◽  
M. Y. Hussaini

Sign in / Sign up

Export Citation Format

Share Document