Two Phase Flow Simulation of Water Ring Vacuum Pump Using VOF Model

Author(s):  
Hui Ding ◽  
Yu Jiang ◽  
Hao Wu ◽  
Jian Wang

Due to the complex two phase flow, CFD simulation of liquid ring pump used to be extremely challenging. Using a recently developed Volume of Fluid (VOF) two phase flow model, this paper presents a 3D transient CFD model for a water ring vacuum pump. The test simulations show that the new VOF model is very robust and can catch most of the important physics when applied to a industrial water ring vacuum pump. Model formulation and problem setup will be presented in detail in the paper. Important issues that could affect the simulation results will be discussed. Water ring pump flow field characteristics revealed from simulation results will be summarized with explanation. And finally the simulation results will be compared with experiment test data.

2011 ◽  
Vol 130-134 ◽  
pp. 3644-3647
Author(s):  
Ding Feng ◽  
Si Huang ◽  
Yu Hui Guan ◽  
Wei Guo Ma

This work performs an oil-water two-phase flow simulation in a downhole Venturi meter to investigate the flow field and pressure characteristics with different flow and oil-water ratios. The relation between the pressure drop and the feed flow rate in the flowmeter is investigated for its optimal design.


2008 ◽  
Vol 39 (3) ◽  
pp. 275-280 ◽  
Author(s):  
Wen-Jie Yang ◽  
Chu-Chuao Wang ◽  
Ren-Yi Hsu ◽  
Rome-Ming Wu

Author(s):  
Aurelia Chenu ◽  
Konstantin Mikityuk ◽  
Rakesh Chawla

In the framework of PSI’s FAST code system, the TRACE thermal-hydraulics code is being extended for representation of sodium two-phase flow. As the currently available version (v.5) is limited to the simulation of only single-phase sodium flow, its applicability range is not enough to study the behavior of a Sodium-cooled Fast Reactor (SFR) during a transient in which boiling is anticipated. The work reported here concerns the extension of the two-fluid models, which are available in TRACE for steam-water, to sodium two-phase flow simulation. The conventional correlations for ordinary gas-liquid flows are used as basis, with optional correlations specific to liquid metal when necessary. A number of new models for representation of the constitutive equations specific to sodium, with a particular emphasis on the interfacial transfer mechanisms, have been implemented and compared with the original closure models. As a first application, the extended TRACE code has been used to model experiments that simulate a loss-of-flow (LOF) accident in a SFR. The comparison of the computed results, with both the experimental data and SIMMER-III code predictions, has enabled validation of the capability of the modified TRACE code to predict sodium boiling onset, flow regimes, dryout, flow reversal, etc. The performed study is a first-of-a-kind application of the TRACE code to two-phase sodium flow. Other integral experiments are planned to be simulated to further develop and validate the two-phase sodium flow methodology.


Sign in / Sign up

Export Citation Format

Share Document