Modeling of Sodium Two-Phase Flow With the TRACE Code

Author(s):  
Aurelia Chenu ◽  
Konstantin Mikityuk ◽  
Rakesh Chawla

In the framework of PSI’s FAST code system, the TRACE thermal-hydraulics code is being extended for representation of sodium two-phase flow. As the currently available version (v.5) is limited to the simulation of only single-phase sodium flow, its applicability range is not enough to study the behavior of a Sodium-cooled Fast Reactor (SFR) during a transient in which boiling is anticipated. The work reported here concerns the extension of the two-fluid models, which are available in TRACE for steam-water, to sodium two-phase flow simulation. The conventional correlations for ordinary gas-liquid flows are used as basis, with optional correlations specific to liquid metal when necessary. A number of new models for representation of the constitutive equations specific to sodium, with a particular emphasis on the interfacial transfer mechanisms, have been implemented and compared with the original closure models. As a first application, the extended TRACE code has been used to model experiments that simulate a loss-of-flow (LOF) accident in a SFR. The comparison of the computed results, with both the experimental data and SIMMER-III code predictions, has enabled validation of the capability of the modified TRACE code to predict sodium boiling onset, flow regimes, dryout, flow reversal, etc. The performed study is a first-of-a-kind application of the TRACE code to two-phase sodium flow. Other integral experiments are planned to be simulated to further develop and validate the two-phase sodium flow methodology.

Author(s):  
Dieter Mewes ◽  
Dirk Schmitz

Pressurized chemical reactors or storage vessels are often partly filled with liquid mixtures of reacting components. In case of an unexpected and uncontrolled exothermic reaction the temperature might increase. By this the pressure follows and would exceed a critical maximum value if there would be no mechanism to decrease the pressure and the temperature in a very short period of time. A sudden venting by the opening of a safety valve or a rupture disc causes a rapid vaporization of the reacting liquid mixture. A two-phase flow will pass the ventline. Since two-phase gas-liquid flows cause high pressure losses and give rise to limited mass flows leaving the reactor, single-phase gas flows are preferred. This is emphasized by a periodic venting mechanism of the pressurized vessel. Each time the two-phase flow from the bubbling-up liquid inside the vessel reaches a certain cross-section close the entrance of the ventline. The outlet-valve is closed. Inside the vessel the increasing pressure stops the two-phase flow and only single phase flow is leaving the vessel. The two-phase bubbly flow inside the vessel is detected by a tomographic measurement device during the venting process. Experimental results for local and time dependant phase void fractions as well as pressures are compared with those obtained by numerical calculations of the instationary bubble swarm behavior inside the vessel.


2021 ◽  
Vol 11 (5) ◽  
pp. 2020
Author(s):  
Thinh Quy Duc Pham ◽  
Jichan Jeon ◽  
Daeseong Jo ◽  
Sanghun Choi

This study aims to investigate the pressure changes, bubble dynamics, and flow physics inside the U- and C-shaped pipes with four different gravitational directions. The simulation is performed using a 1D centerline-based mesh generation technique along with a two-fluid model in the open-source software, OpenFOAM v.6. The continuity and momentum equations of the two-fluid model are discretized using the pressure-implicit method for the pressure-linked equation algorithm. The static and hydrostatic pressures in the two-phase flow were consistent with those of single-phase flow. The dynamic pressure in the two-phase flow was strongly influenced by the effect of the buoyancy force. In particular, if the direction of buoyancy force is the same as the flow direction, the dynamic pressure of the air phase increases, and that of the water phase decreases to satisfy the law of conservation of mass. Dean flows are observed on the transverse plane of the curve regions in both C-shaped and U-shaped pipes. The turbulent kinetic energy is stronger in a two-phase flow than in a single-phase flow. Using the 1D centerline-based mesh generation technique, we demonstrate the changes in pressure and the turbulent kinetic energy of the single- and two-phase flows, which could be observed in curve pipes.


1998 ◽  
Vol 120 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Iztok Tiselj ◽  
Stojan Petelin

The six-equation two-fluid model of two-phase flow taken from the RELAP5/MOD3 computer code has been used to simulate three simple transients: a two-phase shock tube problem, the Edwards Pipe experiment, and water hammer due to rapid valve closure. These transients can be characterized as fast transients, since their characteristic time-scales are determined by the sonic velocity. First and second-order accurate numerical methods have been applied both based on the well-known, Godunov-type numerical schemes. Regarding the uncertainty of the two-fluid models in today’s large computer codes for the nuclear thermal-hydraulics, use of second-order schemes is not always justified. While this paper shows the obvious advantage of second-order schemes in the area of fast transients, first-order accurate schemes may still be sufficient for a wide range of two-phase flow transients where the convection terms play a minor role compared to the source terms.


2020 ◽  
Vol 3 (3) ◽  
pp. 186-207 ◽  
Author(s):  
Markus Hundshagen ◽  
Michael Mansour ◽  
Dominique Thévenin ◽  
Romuald Skoda

Abstract An assessment of a two-fluid model assuming a continuous liquid and a dispersed gas phase for 3D computational fluid dynamics (CFD) simulations of gas/liquid flow in a centrifugal research pump is performed. A monodisperse two-fluid model, in conjunction with a statistical eddy-viscosity turbulence model, is utilized. By a comprehensive measurement database, a thorough assessment of model inaccuracies is enabled. The results on a horizontal diffuser flow reveal that the turbulence model is one main limitation of simulation accuracy for gas/liquid flows. Regarding pump flows, distinctions of single-phase and two-phase flow in a closed and semi-open impeller are figured out. Even single-phase flow simulations reveal challenging requirements on a high spatial resolution, e.g., of the rounded blade trailing edge and the tip clearance gap flow. In two-phase pump operation, gas accumulations lead to coherent gas pockets that are predicted partly at wrong locations within the blade channel. At best, a qualitative prediction of gas accumulations and the head drop towards increasing inlet gas volume fractions (IGVF) can be obtained. One main limitation of two-fluid methods for pump flow is figured out in terms of the violation of the dilute, disperse phase assumption due to locally high disperse phase loading within coherent gas accumulations. In these circumstances, bubble population models do not appear beneficial compared to a monodisperse bubble distribution. Volume-of-Fluid (VOF) methods may be utilized to capture the phase interface at large accumulated gas cavities, requiring a high spatial resolution. Thus, a hybrid model, i.e., a dispersed phase two-fluid model including polydispersity for flow regions with a dilute gas phase, should be combined with an interphase capturing model, e.g., in terms of VOF. This hybrid model, together with scale-resolving turbulence models, seems to be indispensable for a quantitative two-phase pump performance prediction.


Author(s):  
A. M. Mehdizadeh ◽  
M. R. Bazargan-Lari ◽  
A. Mansoori ◽  
A. Mehdizadeh

Boussinesq approximation was widely used in the previous studies to model dilute density or turbidity currents. This approximation was helping to simplify the governing equations and employing a single phase simulation of density currents. In contrast to the general approach of the previous researches who tried to avoid two-phase flow simulation, in this study the two-phase simulation of density current is performed to compare the solution based on the non-Boussinesq behaviour of the fluid with that assuming the Boussinesq approximation. The above goal has been achieved by employing the mixture model for the two-phase flow simulation. The geometry of study is based on a long shallow channel in which a high speed jet of salt-water entering the stilling fresh water via the sluice gate. Different turbulence models results have been compared with the experimental data in order to verify the best results. Also, results of two-phase simulation have been compared to those obtained by the Boussinesq approximation, results show that the two-phase simulation provides superior prediction compared to the conventional single phase flow simulation.


Sign in / Sign up

Export Citation Format

Share Document