Investigation of Turbulent Flow Behavior in a Heated Boundary Layer

Author(s):  
Kadeem Dennis ◽  
Kamran Siddiqui

Abstract The boundary layers are known to play key roles in many engineering systems. The hydrodynamic boundary layer found in these systems is often turbulent in nature and heat transfer is involved which further increases flow complexity due to the influence of buoyancy. One of the constituent layers of the turbulent boundary layer, the inner layer, has been established as home to key dynamical turbulent phenomena which can be influenced by the buoyant force. In the mixed convection flow regime, flow inertia and buoyant force are on the same order of magnitude. In this regime, buoyant thermals rising from the wall interact with the inertia-driven turbulent flow field resulting in highly complex three-dimensional flow dynamics. Past research studies conducted in this flow regime have been mostly computational in nature with little experimental work. The current knowledge on the impact of the relative contributions by the buoyant force and flow inertia on turbulent phenomena in the mixed convection flow regime is very limited. This study reports on an investigation into the turbulent flow phenomena present in mixed convection turbulent boundary layer flow over a heated smooth horizontal flat plate. Experiments were performed in a closed loop wind tunnel where the turbulent boundary layer was heated from below. The multi-plane particle image velocimetry (PIV) technique was used to capture two-dimensional velocity fields over two planes with respect to the flow direction. Experiments were conducted over a range of Richardson numbers (Ri) between 0.0 and 2.0 to control the relative contribution of the buoyant force with respect to flow inertia. The measured velocity fields are used to describe the influence of buoyancy on the three-dimensional turbulent boundary layer flow.

Author(s):  
Kadeem Dennis ◽  
Kamran Siddiqui

Abstract The hydrodynamic boundary layer encountered in many practical engineering systems is turbulent in nature and known to play a significant role in governing the induced friction drag and species transport. In turbulent boundary layer flows, heat transfer is often involved which increases flow complexity due to the influence of buoyancy. When the buoyant force is sufficiently large in magnitude, thermals carrying heated fluid are known to detach and rise from the wall. Literature review shows that in mixed convection, thermals have been primarily identified through qualitative flow visualizations and there is a scarcity of their quantitative assessment. Furthermore, the evolution of thermals in the boundary layer with respect to flow inertia and viscous shear is not well-understood. Hence, there is a need for a better understanding of the dynamics of thermals in mixed convection turbulent boundary layer flow. The objective of this study is to experimentally investigate the three-dimensional nature of thermals rising from a turbulent boundary layer flow over a heated smooth horizontal flat plate. Experiments were performed in a closed loop low-disturbance wind tunnel with a test section featuring a 1 m long heated bottom wall. The multi-plane particle image velocimetry (PIV) technique was used to capture images in multiple planes with respect to the turbulent boundary layer mean flow direction for three-dimensional characterization. The measurements were conducted at Richardson numbers (Ri) of 0.3, 1.0, and 2.0. Flow visualization images are used to describe the nature of thermals and the dynamical processes involved during their interaction with bulk boundary layer flow. An image processing algorithm to detect thermals is then detailed and applied to experimental images. The performance of the new algorithm is then assessed in its ability to detect thermals.


1975 ◽  
Vol 189 (1) ◽  
pp. 305-315 ◽  
Author(s):  
T. J. Kotas

A presentation of some measurements of velocities in the turbulent boundary layer on the end wall of a vortex chamber. These show that the boundary layer flow is three-dimensional with large inward radial velocities. Consequently, most of the fluid entering the vortex chamber passes into the central region through the boundary layers on the end walls rather than the main space of the vortex chamber. A momentum integral solution is used to obtain an estimate of the radial flow through the end-wall boundary layers. A comparison of the theoretical curves with the experimental results gives support to the main assumptions used in the solutions.


1967 ◽  
Vol 18 (2) ◽  
pp. 150-164 ◽  
Author(s):  
N. A. Cumpsty ◽  
M. R. Head

SummaryAn earlier paper described a method of calculating the turbulent boundary layer flow over the rear of an infinite swept wing. It made use of an entrainment equation and momentum integral equations in streamwise and cross-flow directions, together with several auxiliary assumptions. Here the method is adapted to the calculation of the turbulent boundary layer flow along the attachment line of an infinite swept wing. In this case the cross-flow momentum integral equation reduces to the identity 0 = 0 and must be replaced by its differentiated form. Two alternative approaches are also adopted and give very similar results, in good agreement with the limited experimental data available. It is found that results can be expressed as functions of a single parameter C*, which is evidently the criterion of similarity for attachment-line flows.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
S. Abdul Gaffar ◽  
V. Ramachandra Prasad ◽  
Bhuvana Vijaya ◽  
O. Anwar Beg

Magnetic polymers are finding increasing applications in diverse fields of chemical and mechanical engineering. In this paper, we investigate the nonlinear steady boundary layer flow and heat transfer of such fluids from a nonisothermal wedge. The incompressible Eyring-Powell non-Newtonian fluid model is employed and a magnetohydrodynamic body force is included in the simulation. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging nondimensional parameters, namely, the Eyring-Powell rheological fluid parameter (ε), local non-Newtonian parameter based on length scale (δ), Prandtl number (Pr), Biot number (γ), pressure gradient parameter (m), magnetic parameter (M), mixed convection parameter (λ), and dimensionless tangential coordinate (ξ), on velocity and temperature evolution in the boundary layer regime is examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated.


1988 ◽  
Vol 110 (2) ◽  
pp. 358-365 ◽  
Author(s):  
S. S. Moharreri ◽  
B. F. Armaly ◽  
T. S. Chen

Experimental results covering the transition vortex flow regime of mixed convection over a heated, horizontal flat plate are presented. A criterion for the onset of vortex instability as a function of critical Reynolds and Grashof numbers was established with the aid of a flow visualization technique. The three-dimensional nature of this flow regime was documented through both velocity and temperature measurements using laser-Doppler and hot/cold-wire anemometers, respectively. A higher buoyancy force, through a higher plate temperature or a larger downstream distance, and/or a lower free-stream velocity, intensifies the strength of the vortices. Velocity and temperature profiles through vortex peaks and valleys are reported to quantify the behavior of these vortices. It has been found from these measurements that the two-dimensional laminar mixed convection flow changes into a transitional three-dimensional vortex flow in a relatively short distance from the leading edge of the plate. The vortex three-dimensional flow continues to intensify as the buoyancy force increases and then develops into a two-dimensional fully turbulent flow at the end of the transition regime. These findings place an upper limit on the applicability of the two-dimensional, laminar boundary layer flow analysis for mixed convection over a heated horizontal flat plate.


Author(s):  
Kadeem Dennis ◽  
Kamran Siddiqui

The boundary layers are known for their significance in several engineering systems. In particular, the inner region of the turbulent boundary layer has been shown to play a significant role in controlling the dynamics of turbulent structures that are responsible for the transport of mass, heat and momentum. While substantial work has been done in the past to characterize the structure of turbulent flow in this region, the characterization of the three-dimensional turbulent flow structure is limited. This study reports a multi-plane particle image velocimetry (PIV) approach to investigate three-dimensional dynamics of the turbulent boundary layer in the near-wall region. Planar PIV is used to capture two-dimensional fluid velocity fields in several planes with respect to the fluid flow direction. These results are used to describe three-dimensional turbulent events given by key quantities such as mean and turbulent velocities and turbulent kinetic energy.


Sign in / Sign up

Export Citation Format

Share Document