piv technique
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 41)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012022
Author(s):  
A S Nebuchinov

Abstract This study investigates the development of flow and mixing processes in the stationary and impulsive transverse jets with a small degree and frequency of blowing pulsation. Velocity field measurements were carried out using the TR PIV technique. The fields of statistical moments are obtained. It is shown that when a cross flow is injected, the main flow is turbulized, while the rise of the pulsating jet depends on the outflow mode. It is shown that with an increase in the frequency of pulsations of the transverse jet, it is more strongly “pressed” against the lower wall, maximum values of the intensity of pulsations of the transverse velocity component exceed by more than 1.5 times the values of pulsations of the transverse component.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012009
Author(s):  
V F Kopiev ◽  
M Yu Zaytsev ◽  
V A Kopiev

Abstract A study of the instantaneous and average velocity and vorticity fields in the flow created by the model helicopter rotor in the hover mode was carried out. The velocity fields of the flow generated by the model rotor were obtained by a two-dimensional TR PIV system, which provided two components of the velocity vector in the diagnostic light plane. The processing of the obtained raw images was carried out using a two-frame algorithm with adaptive interrogation windows. The experiments carried out have shown the possibility of using the PIV technique to visualize the tip vortex structure descending from the rotor blade. This possibility seems to be especially interesting as one of the means of validation of the numerical methods for calculating rotor aerodynamics and acoustics.


2021 ◽  
pp. 103283
Author(s):  
Ali Soleimani Borujerdi ◽  
Davood Mostofinejad ◽  
Hyeon-Jong Hwang ◽  
Mohammad Sadegh Salimian

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4712
Author(s):  
Daniel Duda ◽  
Václav Uruba ◽  
Vitalii Yanovych

Several methods of defining and estimating the width of a turbulent wake are presented and tested on the experimental data obtained in the wake past an asymmetric prismatic airfoil NACA 64(3)-618, which is often used as tip profile of the wind turbines. Instantaneous velocities are measured by using the Particle Image Velocimetry (PIV) technique. All suggested methods of wake width estimation are based on the statistics of a stream-wise velocity component. First, the expansion of boundary layer (BL) thickness is tested, showing that both displacement BL thickness and momentum BL thickness do not represent the width of the wake. The equivalent of 99% BL thickness is used in the literature, but with different threshold value. It is shown that a lower threshold of 50% gives more stable results. The ensemble average velocity profile is fitted by Gauss function and its σ-parameter is used as another definition of wake width. The profiles of stream-wise velocity standard deviation display a two-peak shape; the distance of those peaks serves as wake width for Norberg, while another tested option is to include the widths of such peaks. Skewness (the third statistical moment) of stream-wise velocity displays a pair of sharp peaks in the wake boundary, but their position is heavily affected by the statistical quality of the data. Flatness (the fourth statistical moment) of the stream-wise velocity refers to the occurrence of rare events, and therefore the distance, where turbulent events ejected from the wake become rare and can be considered as another definition of wake width. The repeatability of the mentioned methods and their sensitivity to Reynolds’ number and model quality are discussed as well.


Author(s):  
Megan Clare Leftwich ◽  
Gino Perrotta ◽  
Frank E Fish

Fish et al. (2014) adapted laboratory PIV for safe use on larger animals. As opposed to seeding the entire flow with reflective particles and illuminating a plane of the flow with a laser, they produced a sheet of small bubbles and used sunlight for global illumination. Underwater cameras imaged the flow in a method similar to traditional PIV. This technique was used to measure the flow around a swimming dolphin and estimate the thrust produced during a tail stand maneuver (Fish et al. (2014, 2018)). In the current work, we will extend the modification of PIV of Fish et al. to measure the flow produced by a swimming sea lion also using bubbles as seeding particles and sunlight as illumination. This is the first time that the flowfield of a swimming sea lion has been directly measured. We will present an extensive extension to the image processing required to measure flow under field conditions. Finally, we will present the flow generated by propulsive strokes of an adult female (Cali) sea lion freely swimming through a pool of stationary water.


Author(s):  
Gabriel Gonzalez Saiz ◽  
Andrea Sciacchitano ◽  
Fulvio Scarano

An experimental methodology is proposed for the study of aeroelastic systems. The approach locally evaluates the forces involved in Collar’s triangle, namely aerodynamic, elastic, and inertial forces. The position of flow tracers as well as of markers on the object surface is monitored by a volumetric PIV system. From the recorded images, the flow tracers and surfare markers are separated based on their optical characteristics. The resulting images are then analysed by Lagrangian particle tracking. The inertial and elastic forces are obtained solely analysing the motion and the deformation of the solid object, whereas the aerodynamic force distribution is obtained via the pressure-from-PIV technique. Experiments are conducted on a benchmark problem of fluid-structure interaction, featuring a flexible panel installed at the trailing edge of a cylinder. A polynomial fit of the markers’ positions is carried out to determine the panel’s instantaneous shape, from which the inertial and elastic forces are evaluated. The pressure loads on the panel are determined via solution of the Poisson equation for pressure, imposing adaptive boundary conditions that comply with the panel. The simultaneous measurement of the three forces allows to assess the equilibrium of forces, and in turn to close Collar’s triangle.


Author(s):  
Emilien Varea ◽  
Benjamin Betting ◽  
Carole Gobin ◽  
Gilles Godard ◽  
Béatrice Patte-Rouland ◽  
...  

Fire safety engineering, including knowledge of fire dynamics and fire-related hazards is crucial for securing people as well as rescue teams during interventions. One of the main critical aspects remains in determining the smoke dynamics at openings where fresh air and hot fumes mix. This particular phenomenon, encountered in many enclosures fires can reveal either well ventilated or under-ventilated fires. The response techniques of rescue teams are different depending on the ventilation status. Merci et al. (2016), Bengtsson et al. (2001) and Pretrel et al. (2012) have studied fire in enclosures that occur in oxygen-limited conditions. Generally, smoke dynamics are studied by using different devices or techniques. These include, among others, Pitot probes and bidirectional probes or McCaffrey probes, McCaffrey and Heskestad (1976). However, these probes are intrusive and potentially affecting the smoke dynamics. Moreover, only one-point data are evaluated. To overcome this difficulty, laser techniques such as PIV can be set up, see Tieszen et al. (2002) , Hou et al. (1996) or Koched et al. (2012). PIV technique has already been used in case of well-ventilated and under-ventilated fires conditions. A natural extension of this technique remains in applying the PIV technique close to the outlet of the container in order to highlight exchanges between hot exhaust fumes and fresh incoming air. The objectives of the paper remain threefold:1. First, we propose a specific design of enclosure fire to ensure large scale PIV measurements inside the enclosure.2. Second, the transition from ventilated to under ventilated fire conditions is evaluated


Sign in / Sign up

Export Citation Format

Share Document