Determination of Significance of Stress Stiffening Effects in Flexible Multibody Dynamic Systems

Author(s):  
Jeha Ryu ◽  
Sang Sup Kim ◽  
Sung-Soo Kim

Abstract This paper presents a criterion for determining whether or not a flexible multibody dynamic system reveals stress stiffening effects. In the proposed criterion, the eigenvalue variation that results from adding the modal stress stiffness matrix to the conventional linear modal stiffness matrix is examined numerically before actual dynamic simulation. If the variation is sufficiently large for any flexible body, then stress stiffening effects are said to be significant and must be included in dynamic simulation of flexible multibody systems. Since the criterion uses the most general stress stiffness matrix, which can be represented as a function of applied and constraint reaction loads as well as of a system of 12 inertial loads, this criterion is applicable to any general flexible multibody dynamic systems. Several numerical results are presented to show the effectiveness of the proposed criterion.

2021 ◽  
Author(s):  
Adwait Verulkar ◽  
Corina Sandu ◽  
Daniel Dopico ◽  
Adrian Sandu

Abstract Sensitivity analysis is one of the most prominent gradient based optimization techniques for mechanical systems. Model sensitivities are the derivatives of the generalized coordinates defining the motion of the system in time with respect to the system design parameters. These sensitivities can be calculated using finite differences, but the accuracy and computational inefficiency of this method limits its use. Hence, the methodologies of direct and adjoint sensitivity analysis have gained prominence. Recent research has presented computationally efficient methodologies for both direct and adjoint sensitivity analysis of complex multibody dynamic systems. The contribution of this article is in the development of the mathematical framework for conducting the direct sensitivity analysis of multibody dynamic systems with joint friction using the index-1 formulation. For modeling friction in multibody systems, the Brown and McPhee friction model has been used. This model incorporates the effects of both static and dynamic friction on the model dynamics. A case study has been conducted on a spatial slider-crank mechanism to illustrate the application of this methodology to real-world systems. Using computer models, with and without joint friction, effect of friction on the dynamics and model sensitivities has been demonstrated. The sensitivities of slider velocity have been computed with respect to the design parameters of crank length, rod length, and the parameters defining the friction model. Due to the highly non-linear nature of friction, the model dynamics are more sensitive during the transition phases, where the friction coefficient changes from static to dynamic and vice versa.


Author(s):  
Theodore G. Mordfin ◽  
Sivakumar S. K. Tadikonda

Abstract Guidelines are sought for generating component body models for use in controlled, articulated, flexible multibody dynamics system simulations. In support of this effort, exact truth models and linearized large-articulation models are developed in a companion paper. The purpose of the truth models is to aid in evaluating the use of various types of component body assumed modes in the large-articulation models. The assumed mode models are analytically evaluated from the perspectives of both structural dynamics and multibody dynamics. In this paper, component body assumed modes are tested in a linearized large-articulation model. The numerical behavior of the model and its performance in the presence of parameter variation is investigated and explained. The results show that high accuracy, high simulation efficiency, and numerical robustness cannot be simultaneously achieved. However, in many cases, satisfactory levels of all three are achievable. Guidelines are proposed for modeling the flexible bodies in controlled-articulation flexible multibody dynamic systems.


1991 ◽  
Vol 113 (2) ◽  
pp. 102-109 ◽  
Author(s):  
B. S. Bagepalli ◽  
T. L. Haskins ◽  
I. Imam

This paper deals with the application of homogeneous (4 × 4) transformations to the generalizing modeling of cam-follower pairs. The procedure adopted is generic, in that it suggests a method of incorporating the modeling of cam-follower pairs in a general purpose program, such as MAP (Mechanism Analysis Program, © General Electric Co.) capable of solving the dynamics of multibody systems, in which any of the bodies could be cams, or followers. This development covers both 2D and 3D cam-follower pairs: XY cams, rotary cams, and drum cams. The cams could be dynamic—with single, or two surfaces (or tracked), with the possibility of impacts between the follower and these surfaces, or, kinematic, with the follower being guided exactly in a slot. This generalized procedure allows one to model several cam-follower pairs in a multibody dynamic system. This is useful in studying, for instance, the dynamic effects that tend to bounce a follower off of a cam surface, the contact force generated, etc. The procedure, also, just as easily, allows for the easy studying of the effects of varying the cam surface profile. Several examples have been tried, and some correlations have been obtained with experimental observations.


Sign in / Sign up

Export Citation Format

Share Document