direct sensitivity
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Jeana Mascio ◽  
Stephen S. Leroy ◽  
Robert P. d’Entremont ◽  
Thomas Connor ◽  
E. Robert Kursinski

AbstractRadio occultation (RO) measurements have little direct sensitivity to clouds, but recent studies have shown that they may have an indirect sensitivity to thin, high clouds that are difficult to detect using conventional passive space-based cloud sensors. We implement two RO-based cloud detection (ROCD) algorithms for atmospheric layers in the middle and upper troposphere. The first algorithm is based on the methodology of a previous study, which explored signatures caused by upper tropospheric clouds in RO profiles according to retrieved relative humidity, temperature lapse rate, and gradients in log-refractivity (ROCD-P), and the second is based on inferred relative humidity alone (ROCD-M). In both, atmospheric layers are independently predicted as cloudy or clear based on observational data, including high performance RO retrievals. In a demonstration, we use data from 10 days spanning seven months in 2020 of FORMOSAT-7/COSMIC-2. We use the forecasts of NOAA GFS to aid in the retrieval of relative humidity. The prediction is validated with a cloud truth dataset created from the imagery of the GOES-16 Advanced Baseline Imager (ABI) satellite and the GFS three-dimensional analysis of cloud state conditions. Given these two algorithms for the presence or absence of clouds, confusion matrices and receiver operating characteristic (ROC) curves are used to analyze how well these algorithms perform. The ROCD-M algorithm has a balanced accuracy, which defines the quality of the classification test that considers both the sensitivity and specificity, greater than 70% for all altitudes between 6 and 10.25 km.


2021 ◽  
Author(s):  
Adwait Verulkar ◽  
Corina Sandu ◽  
Daniel Dopico ◽  
Adrian Sandu

Abstract Sensitivity analysis is one of the most prominent gradient based optimization techniques for mechanical systems. Model sensitivities are the derivatives of the generalized coordinates defining the motion of the system in time with respect to the system design parameters. These sensitivities can be calculated using finite differences, but the accuracy and computational inefficiency of this method limits its use. Hence, the methodologies of direct and adjoint sensitivity analysis have gained prominence. Recent research has presented computationally efficient methodologies for both direct and adjoint sensitivity analysis of complex multibody dynamic systems. The contribution of this article is in the development of the mathematical framework for conducting the direct sensitivity analysis of multibody dynamic systems with joint friction using the index-1 formulation. For modeling friction in multibody systems, the Brown and McPhee friction model has been used. This model incorporates the effects of both static and dynamic friction on the model dynamics. A case study has been conducted on a spatial slider-crank mechanism to illustrate the application of this methodology to real-world systems. Using computer models, with and without joint friction, effect of friction on the dynamics and model sensitivities has been demonstrated. The sensitivities of slider velocity have been computed with respect to the design parameters of crank length, rod length, and the parameters defining the friction model. Due to the highly non-linear nature of friction, the model dynamics are more sensitive during the transition phases, where the friction coefficient changes from static to dynamic and vice versa.


2021 ◽  
Vol 22 (15) ◽  
pp. 8207
Author(s):  
Oksana O. Kolachevskaya ◽  
Yulia A. Myakushina ◽  
Irina A. Getman ◽  
Sergey N. Lomin ◽  
Igor V. Deyneko ◽  
...  

Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.


2020 ◽  
Author(s):  
Samuel Murray ◽  
Zachary Irving ◽  
Kristina Krasich

In this chapter, we survey methodological challenges in the empirical study of mind wandering and provide a metaphysical framework that begins to address these challenges. We argue that mind wandering is a passive manifestation of agency—passive because people cannot mind wander on command and a manifestation of agency because the onset, progression, and content of mind wandering often exhibits direct sensitivity to personal concerns and plans. To measure passive thinking, researchers must ask, “Is your mind wandering?” Worries about this self-report methodology have encouraged researchers to develop “objective” measures of mind wandering through eye tracking and machine learning techniques. These “objective” measures, however, are validated in terms of how well they predict self-reports, which means that purportedly objective measures of mind wandering retain a subjective core. To assuage worries about self-report (and, ultimately, vindicate objective measures of mind wandering), we offer a metaphysical account of mind wandering that generates several predictions about its causes and consequences. This account also justifies different methods for measuring mind wandering.


2019 ◽  
Vol 209 ◽  
pp. 478-480 ◽  
Author(s):  
Vyaas Gururajan ◽  
Fokion N. Egolfopoulos

2019 ◽  
Vol 76 (1) ◽  
pp. 195-208 ◽  
Author(s):  
Kerry Emanuel

Abstract A framework for conceptual understanding of slow, convectively coupled disturbances is developed and applied to several canonical tropical problems, including the water vapor content of an atmosphere in radiative–convective equilibrium, the relationship between convective precipitation and column water vapor, Walker-like circulations, self-aggregation of convection, and the Madden–Julian oscillation. The framework is a synthesis of previous work that developed four key approximations: boundary layer energy quasi equilibrium, conservation of free-tropospheric moist and dry static energies, and the weak temperature gradient approximation. It is demonstrated that essential features of slow, convectively coupled processes can be understood without reference to complex turbulent and microphysical processes, even though accounting for such complexity is essential to quantitatively accurate modeling. In particular, we demonstrate that the robust relationship between column water vapor and precipitation observed over tropical oceans does not necessarily imply direct sensitivity of convection to free-tropospheric moisture. We also show that to destabilize the radiative–convective equilibrium state, feedbacks between radiation and clouds and water vapor must be sufficiently strong relative to the gross moist stability.


2019 ◽  
Vol 3 (3) ◽  
pp. 165-176
Author(s):  
Sarah Stuart Chewning ◽  
David L. Grant ◽  
Bridget S. O’Banion ◽  
Alexandra D. Gates ◽  
Brandon J. Kennedy ◽  
...  

Streptomycetaceae assemble into the internal, root endophytic compartment of a wide variety of plants grown in soils worldwide, suggesting their ability to survive during root microbiome assembly. A previous study found that among four nonpathogenic, root-isolated Streptomyces strains (303, 299, CL18, and 136), only 303 and 299 colonized endophytic root tissue of the majority of Arabidopsis thaliana roots when inoculated with 34 other bacterial isolates. Here we demonstrate that 303 and 299 also colonize significantly more in singly inoculated A. thaliana seedlings. The genomes of melanin-producing 303 and 299 each contain two copies of the gene encoding tyrosinase (melC2 and melD2), an enzyme necessary for melanin biosynthesis in Streptomyces. These genes were not found in the genomes of 136 or CL18. Tyrosinase activity was detected in 303 and 299 whole cell and supernatant protein extracts, suggesting functional intracellular and extracellular enzymes.. Because tyrosinase oxidizes phenolic compounds and Streptomyces colonization of A. thaliana appears to be influenced by the phenolic compound salicylic acid (SA), we measured direct sensitivity of Streptomyces isolates to the phenolic compounds catechol, ferulic acid (FA), and SA in vitro. While both 303 and 299 showed higher numbers of surviving colonies than CL18 and 136 in the presence of catechol, only 303 demonstrated a higher number of surviving colonies when isolates were challenges with FA and SA. Finally, when seedlings were singly inoculated with a collection of related plant-associated Streptomyces isolates, colonization was significantly higher in isolates possessing two tyrosinase gene copies than isolates with zero or one gene copy. Overall, we describe a connection between microbial tyrosinase activity and increased seedling colonization of nonpathogenic Streptomyces isolates in A. thaliana. We propose tyrosinase activity in Streptomyces partially protects against harmful plant-produced phenolic compounds as they transition into an endophytic lifestyle.


Sign in / Sign up

Export Citation Format

Share Document