A Hybrid Approach of Heuristic and Neural Network for Packing Problems
Abstract Artificial Neural Networks, particularly the Hopfield-Tank network, have been effectively applied to the solution of a variety of tasks formulated as large scale combinatorial optimization problems, such as Travelling Salesman Problem and N Queens Problem [1]. The problem of optimally packing a set of geometries into a space with finite dimensions arises frequently in many applications and is far difficult than general NP-complete problems listed in [2]. Until now within accepted time limit, it can only be solved with heuristic methods for very simple cases (e.g. 2D layout). In this paper we propose a heuristic-based Hopfield neural network designed to solve the rectangular packing problems in two dimensions, which is still NP-complete [3]. By comparing the adequacy and efficiency of the results with that obtained by several other exact and heuristic approaches, it has been concluded that the proposed method has great potential in solving 2D packing problems.