Active Wave Cancellation of the Axially Moving String

Author(s):  
Chin An Tan ◽  
Shenger Ying

Abstract The active wave control of the linear, axially moving string with general boundary conditions is presented in this paper. Considerations of general boundary conditions are important from both practical and experimental viewpoints. The active control law is established by employing the idea of wave cancellation. An exact, closed-form expression for the transverse response of the controlled system, consisting of the flexible structure, the wave controller, and the sensing and actuation devices, is derived in the frequency domain. Two actuation forces, one upstream and one downstream of an excitation force, are applied. The proposed control law shows that all modes of the string are controlled and the vibration in the regions upstream and downstream of the control forces can be cancelled. However, these results are based on ideal conditions and the assumption of zero initial conditions at the non-fixed boundaries. Effects of non-zero boundary motions at the instant of application of the control forces are examined and the control is shown to be effective under these conditions. The stability and robustness of the control forces are improved by the introduction of a stabilization coefficient in the control law. The effectiveness, robustness and stability of the control forces are demonstrated by simulations and verified by experiments on axially moving belt drive and chain drive systems.

2012 ◽  
Vol 19 (3) ◽  
pp. 333-347 ◽  
Author(s):  
R. Abu-Mallouh ◽  
I. Abu-Alshaikh ◽  
H.S. Zibdeh ◽  
Khaled Ramadan

This paper presents the transverse vibration of Bernoulli-Euler homogeneous isotropic damped beams with general boundary conditions. The beams are assumed to be subjected to a load moving at a uniform velocity. The damping characteristics of the beams are described in terms of fractional derivatives of arbitrary orders. In the analysis where initial conditions are assumed to be homogeneous, the Laplace transform cooperates with the decomposition method to obtain the analytical solution of the investigated problems. Subsequently, curves are plotted to show the dynamic response of different beams under different sets of parameters including different orders of fractional derivatives. The curves reveal that the dynamic response increases as the order of fractional derivative increases. Furthermore, as the order of the fractional derivative increases the peak of the dynamic deflection shifts to the right, this yields that the smaller the order of the fractional derivative, the more oscillations the beam suffers. The results obtained in this paper closely match the results of papers in the literature review.


Author(s):  
C. H. Chung ◽  
C. A. Tan

Abstract Active vibration control of an axially moving string by wave cancellation is presented. The control problem is formulated in the frequency domain. An exact, closed-form expression for the transfer function of the closed-loop system, consisting of the flexible structure, a feedback control law and the dynamics of the sensing and actuation devices, is derived. It is shown that all vibration modes can be stabilized and that the controlled system has no resonance. Moreover, the designed controller is applicable to the control of the string transverse vibration under various kinds of loading and constraint conditions. Results for the response of the controlled string under different excitations are presented and discussed along with the wave propagation and cancellation characteristics.


1995 ◽  
Vol 117 (1) ◽  
pp. 49-55 ◽  
Author(s):  
C. H. Chung ◽  
C. A. Tan

Active vibration control of an axially moving string by wave cancellation is presented. The control problem is formulated in the frequency domain. An exact, closed-form expression for the transfer function of the controlled system, consisting of the flexible structure, a feedback control law and the dynamics of the sensing and actuation devices, is derived. It is shown that all vibration modes can be stabilized and that the controlled system has no resonance. Moreover, the designed controller is applicable to the control of the string transverse vibration under various kinds of loading and constraint conditions. Results for the response of the controlled string under different excitations are presented and discussed along with the wave propagation and cancellation characteristics.


Author(s):  
S. Ying ◽  
C. A. Tan

Abstract This paper presents an exact solution for the transverse response of an axially moving string under general boundary conditions. The response solution is derived in the frequency domain and interpreted in terms of wave propagation functions. The response in the time domain involves only several convolution integrals which can easily be obtained for many physical boundary conditions. The transient response of the translating string with a spring or a dashpot at a boundary is presented.


Sign in / Sign up

Export Citation Format

Share Document