transverse response
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Nicola Longarini ◽  
Pietro Giuseppe Crespi ◽  
Marco Zucca

Abstract Recent Italian earthquakes have shown the seismic vulnerability of many typical historical masonry churches characterized by one nave and wooden roofs. Under transverse earthquake the nave transverse response of this kind of churches can be influenced by the geometrical and material features. To increase the seismic performance, strengthening interventions aimed to pursue the global box-behavior by the realization of dissipative roof-structure represent a valid strategy especially for avoiding out-of-plane mechanisms. In this way, the roof structure must be able to represent a tool for the damped rocking of the perimeter walls. Cross-laminated timber panels (CLT) have been recently adopted as roof-diaphragm having shown valid ductile behavior in experimental tests, satisfying the conservative restoration criteria at the same time. In this paper, after a description of the numerical approach for the damped rocking mechanism for one nave configuration church, the effectiveness of different CLT based roof-diaphragms in the nave transverse response is investigated for four historical churches. The seismic responses are performed by comparative dynamic nonlinear analyses and the results are shown in terms of displacements and shear actions transferred to the façade. The influence of the geometrical features of the churches on the nave transversal response is deepened by sensitivity analyses with the aim to predict the displacements and shear variations under the same earthquake excitation.


2022 ◽  
Author(s):  
Joe Schoneman ◽  
Jacob Del Toro ◽  
Robert D. Blevins ◽  
Eric Blades

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sajid Ali ◽  
Sikandar Khan ◽  
Arshad Jamal ◽  
Mamon M. Horoub ◽  
Mudassir Iqbal ◽  
...  

This study presented the transverse vibration of an axially moving beam with an intermediate nonlinear viscoelastic foundation. Hamilton’s principle was used to derive the nonlinear equations of motion. The finite difference and state-space methods transform the partial differential equations into a system of coupled first-order regular differential equations. The numerical modeling procedures are utilized for evaluating the effects of parameters, such as axial translation velocity, flexure rigidities of the beam, damping, and stiffness of the support on the transverse response amplitude and frequencies. It is observed that the dimensionless fundamental frequency and magnitude of axial speed had an inverse correlation. Furthermore, increasing the flexure rigidity of the beam reduced the transverse displacement, but at the same instant, fundamental frequency rises. Vibration amplitude is found to be significantly reduced with higher damping of support. It is also observed that an increase in the foundation damping leads to lower fundamental frequencies, whereas increasing the foundation stiffness results in higher frequencies.


2021 ◽  
Vol 7 (13) ◽  
pp. eabf1467
Author(s):  
T. Asaba ◽  
V. Ivanov ◽  
S. M. Thomas ◽  
S. Y. Savrasov ◽  
J. D. Thompson ◽  
...  

The transverse voltage generated by a temperature gradient in a perpendicularly applied magnetic field, termed the Nernst effect, has promise for thermoelectric applications and for probing electronic structure. In magnetic materials, an anomalous Nernst effect (ANE) is possible in a zero magnetic field. We report a colossal ANE in the ferromagnetic metal UCo0.8Ru0.2Al, reaching 23 microvolts per kelvin. Uranium’s 5f electrons provide strong electronic correlations that lead to narrow bands, a known route to producing a large thermoelectric response. In addition, uranium’s strong spin-orbit coupling produces an intrinsic transverse response in this material due to the Berry curvature associated with the relativistic electronic structure. Theoretical calculations show that in UCo0.8Ru0.2Al at least 148 Weyl nodes, and two nodal lines, exist within 60 millielectron volt of the Fermi level. This work demonstrates that magnetic actinide materials can host strong Nernst and Hall responses due to their combined correlated and topological nature.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fengde Wang ◽  
Wensheng Xiao ◽  
Yanan Yao ◽  
Qi Liu ◽  
Changjiang Li

Marine riser is a key equipment in offshore drilling operation, and failure of the riser can lead to drilling moratorium; in severe cases, it may cause oil and gas leaks. In this paper, the time-dependent boundary conditions of the riser and the randomness of wave load are considered to improve the calculation efficiency and accuracy of the dynamic response of the jack-up riser. Based on the Euler–Bernoulli beam theory, an analytical method to determine the response of the jack-up riser subjected to the random wave load was established by the Mindlin–Goodman method in the frequency domain, and an experiment was carried out to verify it. The research shows that transverse dynamic response is the main component of the transverse response of the riser, and the method proposed is feasible to calculate the transverse response of the riser.


2020 ◽  
Vol 101 (18) ◽  
Author(s):  
Liangcai Xu ◽  
Xiaokang Li ◽  
Linchao Ding ◽  
Taishi Chen ◽  
Akito Sakai ◽  
...  

2020 ◽  
Vol 6 (17) ◽  
pp. eaaz3522 ◽  
Author(s):  
Liangcai Xu ◽  
Xiaokang Li ◽  
Xiufang Lu ◽  
Clément Collignon ◽  
Huixia Fu ◽  
...  

The Wiedemann-Franz (WF) law has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport and the topological nature of the wave function, remains an open question. Here, we present a study of anomalous transverse response in the noncollinear antiferromagnet Mn3Ge extended from room temperature down to sub-kelvin temperature and find that the anomalous Lorenz ratio remains close to the Sommerfeld value up to 100 K but not above. The finite-temperature violation of the WF correlation is caused by a mismatch between the thermal and electrical summations of the Berry curvature and not by inelastic scattering. This interpretation is backed by our theoretical calculations, which reveals a competition between the temperature and the Berry curvature distribution. The data accuracy is supported by verifying the anomalous Bridgman relation. The anomalous Lorenz ratio is thus an extremely sensitive probe of the Berry spectrum of a solid.


Sign in / Sign up

Export Citation Format

Share Document