On MEMS/NEMS Biosensor Sensitivity Near Half Natural Frequency
This paper deals with sensitivity of electrostatically actuated Bio-MEMS/NEMS resonator sensors near half natural frequency for mass detection for applications in medicine and biology. Electrostatic force along with fringe correction and Casimir effect are included in the model. They introduce parametric nonlinear terms in the system. The partial-differential equation of motion of the system is solved by using the method of multiple scales. A direct approach of the problem is then used. Two approximation problems resulting from the direct approach are solved. The phase-amplitude relationship is obtained. Numerical results for uniform electrostatically actuated micro resonator sensors are provided. An additional mass consisting of a film with a thickness of 100 nm (virus size), and a density of 0.43 of the density of the microsensor, has been added to the sensor. The additional mass shifted the amplitude-frequency curve of the sensor to lower frequencies.