casimir force
Recently Published Documents


TOTAL DOCUMENTS

830
(FIVE YEARS 87)

H-INDEX

69
(FIVE YEARS 3)

Laser Physics ◽  
2022 ◽  
Vol 32 (2) ◽  
pp. 025203
Author(s):  
Zhe Jin ◽  
Tian Tian ◽  
Wentao Wang ◽  
Yumei Long ◽  
Xue Zhang ◽  
...  

Abstract In this paper, we study the dynamical Casimir–Polder force between an ensemble of identical two-level atoms and the wall of a rectangle waveguide with semi-infinite length. With the presence of both the rotating wave and counter rotating wave terms in the light–matter interaction Hamiltonian, we utilize the perturbation theory to solve the Heisenberg equation. Up to the seconder of coupling strength, we obtain the energy shift analytically and the Casimir–Polder force numerically. Our result shows that the dynamical behavior of the Casimir force is closely connected to the photon propagation in the waveguide. Therefore, we hope this work will stimulate the studies about the quantum effect in waveguide scenario.


Author(s):  
Joshua Javor ◽  
Matthias Imboden ◽  
Alexander Stange ◽  
Zhancheng Yao ◽  
David K. Campbell ◽  
...  

AbstractIn this paper, we discuss using the Casimir force in conjunction with a MEMS parametric amplifier to construct a quantum displacement amplifier. Such a mechanical amplifier converts DC displacements into much larger AC oscillations via the quantum gain of the system which, in some cases, can be a factor of a million or more. This would allow one to build chip scale metrology systems with zeptometer positional resolution. This approach leverages quantum fluctuations to build a device with a sensitivity that can’t be obtained with classical systems.


Author(s):  
Frieder Lindel ◽  
Francesca Fabiana Settembrini ◽  
Robert Bennett ◽  
Stefan Yoshi Buhmann

Abstract The effect of cavities or plates upon the electromagnetic quantum vacuum are considered in the context of electro-optic sampling, revealing how they can be directly studied. These modifications are at the heart of e.g. the Casimir force or the Purcell effect such that a link between electro-optic sampling of the quantum vacuum and environment-induced vacuum effects is forged. Furthermore, we discuss the microscopic processes underlying electro-optic sampling of quantum-vacuum fluctuations, leading to an interpretation of these experiments in terms of exchange of virtual photons. With this in mind it is shown how one can reveal the dynamics of vacuum fluctuations by resolving them in the frequency and time domains using electro-optic sampling experiments.


2021 ◽  
Vol 2 (1) ◽  
pp. 41-50
Author(s):  
Masoud Goharimanesh ◽  
◽  
Ali Koochi ◽  

This paper deals with investigating the nonlinear oscillation of carbon nanotube manufactured nano-resonator. The governing equation of the nano-resonator is extracted in the context of the nonlocal elasticity. The impact of the Casimir force is also incorporated in the developed model. A closed-form solution based on the energy balance method is presented for investigating the oscillations of the nano-resonator. The proposed closed-form solution is compared with the numerical solution. The impact of influential parameters including applied voltage, Casimir force, geometrical and nonlocal parameters on the nano resonator’s vibration and frequency are investigated. The obtained results demonstrated that the Casimir force reduces the nano-resonator frequency. However, the nonlocal parameter has a hardening effect and enhances the system’s frequency.


2021 ◽  
Vol 3 (4) ◽  
pp. 731-745
Author(s):  
Norio Inui

The Casimir effect between type-II superconducting plates in the coexisting phase of a superconducting phase and a normal phase is investigated. The dependence of the optical conductivity of the superconducting plates on the external magnetic field is described in terms of the penetration depth of the incident electromagnetic field, and the permittivity along the imaginary axis is represented by a linear combination of the permittivities for the plasma model and Drude models. The characteristic frequency in each model is determined using the force parameters for the motion of the magnetic field vortices. The Casimir force between parallel YBCO plates in the mixed state is calculated, and the dependence on the applied magnetic field and temperature is considered.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 343
Author(s):  
Galina L. Klimchitskaya ◽  
Vladimir M. Mostepanenko

We consider axionlike particles as the most probable constituents of dark matter, the Yukawa-type corrections to Newton’s gravitational law and constraints on their parameters following from astrophysics and different laboratory experiments. After a brief discussion of the results by Prof. Yu. N. Gnedin in this field, we turn our attention to the recent experiment on measuring the differential Casimir force between Au-coated surfaces of a sphere and the top and bottom of rectangular trenches. In this experiment, the Casimir force was measured over an unusually wide separation region from 0.2 to 8μm and compared with the exact theory based on first principles of quantum electrodynamics at nonzero temperature. We use the measure of agreement between experiment and theory to obtain the constraints on the coupling constant of axionlike particles to nucleons and on the interaction strength of a Yukawa-type interaction. The constraints obtained on the axion-to-nucleon coupling constant and on the strength of a Yukawa interaction are stronger by factors of 4 and 24, respectively, than those found previously from gravitational experiments and measurements of the Casimir force but weaker than the constraints following from a differential measurement where the Casimir force was nullified. Some other already performed and planned experiments aimed at searching for axions and non-Newtonian gravity are discussed, and their prospects are evaluated.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Josh Javor ◽  
Zhancheng Yao ◽  
Matthias Imboden ◽  
David K. Campbell ◽  
David J. Bishop

AbstractThe Casimir force, a quantum mechanical effect, has been observed in several microelectromechanical system (MEMS) platforms. Due to its extreme sensitivity to the separation of two objects, the Casimir force has been proposed as an excellent avenue for quantum metrology. Practical application, however, is challenging due to attractive forces leading to stiction and device failure, called Casimir pull-in. In this work, we design and simulate a Casimir-driven metrology platform, where a time-delay-based parametric amplification technique is developed to achieve a steady-state and avoid pull-in. We apply the design to the detection of weak, low-frequency, gradient magnetic fields similar to those emanating from ionic currents in the heart and brain. Simulation parameters are selected from recent experimental platforms developed for Casimir metrology and magnetic gradiometry, both on MEMS platforms. While a MEMS offers many advantages to such an application, the detected signal must typically be at the resonant frequency of the device, with diminished sensitivity in the low frequency regime of biomagnetic fields. Using a Casimir-driven parametric amplifier, we report a 10,000-fold improvement in the best-case resolution of MEMS single-point gradiometers, with a maximum sensitivity of 6 Hz/(pT/cm) at 1 Hz. Further development of the proposed design has the potential to revolutionize metrology and may specifically enable the unshielded monitoring of biomagnetic fields in ambient conditions.


2021 ◽  
Vol 150 ◽  
pp. 111199
Author(s):  
Faezeh Jenabi Oskouei ◽  
Amir Ali Masoudi ◽  
Mohammad Khorrami

Sign in / Sign up

Export Citation Format

Share Document