A Random Process Metamodel for Time-Dependent Reliability of Dynamic Systems

Author(s):  
Dorin Drignei ◽  
Igor Baseski ◽  
Zissimos P. Mourelatos ◽  
Vijitashwa Pandey

A new metamodeling approach is proposed to characterize the output (response) random process of a dynamic system with random variables, excited by input random processes. The metamodel is then used to efficiently estimate the time-dependent reliability. The input random processes are decomposed using principal components or wavelets and a few simulations are used to estimate the distributions of the decomposition coefficients. A similar decomposition is performed on the output random process. A Kriging model is then built between the input and output decomposition coefficients and is used subsequently to quantify the output random process corresponding to a realization of the input random variables and random processes. In our approach, the system input is not deterministic but random. We establish therefore, a surrogate model between the input and output random processes. The quantified output random process is finally used to estimate the time-dependent reliability or probability of failure using the total probability theorem. The proposed method is illustrated with a corroding beam example.

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Dorin Drignei ◽  
Igor Baseski ◽  
Zissimos P. Mourelatos ◽  
Ervisa Kosova

A new metamodeling approach is proposed to characterize the output (response) random process of a dynamic system with random variables, excited by input random processes. The metamodel is then used to efficiently estimate the time-dependent reliability. The input random processes are decomposed using principal components, and a few simulations are used to estimate the distributions of the decomposition coefficients. A similar decomposition is performed on the output random process. A Kriging model is then built between the input and output decomposition coefficients and is used subsequently to quantify the output random process. The innovation of our approach is that the system input is not deterministic but random. We establish, therefore, a surrogate model between the input and output random processes. To achieve this goal, we use an integral expression of the total probability theorem to estimate the marginal distribution of the output decomposition coefficients. The integral is efficiently estimated using a Monte Carlo (MC) approach which simulates from a mixture of sampling distributions with equal mixing probabilities. The quantified output random process is finally used to estimate the time-dependent probability of failure. The proposed method is illustrated with a corroding beam example.


Author(s):  
Zissimos P. Mourelatos ◽  
Monica Majcher ◽  
Vijitashwa Pandey ◽  
Igor Baseski

A new reliability analysis method is proposed for time-dependent problems with limit-state functions of input random variables, input random processes and explicit in time using the total probability theorem and the concept of composite limit state. The input random processes are assumed Gaussian. They are expressed in terms of standard normal variables using a spectral decomposition method. The total probability theorem is employed to calculate the time-dependent probability of failure using a time-dependent conditional probability which is computed accurately and efficiently in the standard normal space using FORM and a composite limit state of linear instantaneous limit states. If the dimensionality of the total probability theorem integral (equal to the number of input random variables) is small, we can easily calculate it using Gauss quadrature numerical integration. Otherwise, simple Monte Carlo simulation or adaptive importance sampling is used based on a pre-built Kriging metamodel of the conditional probability. An example from the literature on the design of a hydrokinetic turbine blade under time-dependent river flow load demonstrates all developments.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Zissimos P. Mourelatos ◽  
Monica Majcher ◽  
Vijitashwa Pandey ◽  
Igor Baseski

A new reliability analysis method is proposed for time-dependent problems with explicit in time limit-state functions of input random variables and input random processes using the total probability theorem and the concept of composite limit state. The input random processes are assumed Gaussian. They are expressed in terms of standard normal variables using a spectral decomposition method. The total probability theorem is employed to calculate the time-dependent probability of failure using time-dependent conditional probabilities which are computed accurately and efficiently in the standard normal space using the first-order reliability method (FORM) and a composite limit state of linear instantaneous limit states. If the dimensionality of the total probability theorem integral is small, we can easily calculate it using Gauss quadrature numerical integration. Otherwise, simple Monte Carlo simulation (MCS) or adaptive importance sampling are used based on a Kriging metamodel of the conditional probabilities. An example from the literature on the design of a hydrokinetic turbine blade under time-dependent river flow load demonstrates all developments.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Zissimos P. Mourelatos ◽  
Monica Majcher ◽  
Vasileios Geroulas

The field of random vibrations of large-scale systems with millions of degrees-of-freedom (DOF) is of significant importance in many engineering disciplines. In this paper, we propose a method to calculate the time-dependent reliability of linear vibratory systems with random parameters excited by nonstationary Gaussian processes. The approach combines principles of random vibrations, the total probability theorem, and recent advances in time-dependent reliability using an integral equation involving the upcrossing and joint upcrossing rates. A space-filling design, such as optimal symmetric Latin hypercube (OSLH) sampling, is first used to sample the input parameter space. For each design point, the corresponding conditional time-dependent probability of failure is calculated efficiently using random vibrations principles to obtain the statistics of the output process and an efficient numerical estimation of the upcrossing and joint upcrossing rates. A time-dependent metamodel is then created between the input parameters and the output conditional probabilities allowing us to estimate the conditional probabilities for any set of input parameters. The total probability theorem is finally applied to calculate the time-dependent probability of failure. The proposed method is demonstrated using a vibratory beam example.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Dimitrios Papadimitriou ◽  
Zissimos P. Mourelatos ◽  
Zhen Hu

Abstract This paper proposes a new methodology for time-dependent reliability and random vibrations of nonlinear vibratory systems using a combination of a time-dependent adjoint variable (AV) method and a projected differentiation (PD) method. The proposed approach is called AV-PD. The vibratory system is excited by stationary Gaussian or non-Gaussian input random processes. A Karhunen–Loeve (KL) expansion expresses each input random process in terms of standard normal random variables. The nonlinear equations of motion (EOM) are linearized using a Taylor expansion using the first-order derivatives of the output with respect to the input KL random variables. An adjoint approach obtains the output derivatives accurately and efficiently requiring the solution of as many sets of EOM as the number of outputs of interest, independently of the number of KL random variables. The proposed PD method then computes the autocorrelation function of each output process at an additional cost of solving as many sets of EOM as the number of outputs of interest, independently of the time horizon (simulation time). A time-dependent reliability analysis is finally performed using a KL expansion of the output processes and Monte Carlo simulation (MCS). The number of solutions of the EOM scales only with the number of output random processes which is commonly much smaller than the number of input KL random variables. The efficiency and accuracy of the proposed approach is demonstrated using a four degree-of-freedom (DOF) half-car vibratory problem.


Author(s):  
Dimitrios Papadimitriou ◽  
Zissimos P. Mourelatos ◽  
Zhen Hu

Abstract This paper proposes a new methodology for time-dependent reliability and random vibrations of nonlinear vibratory systems using a combination of a time-dependent adjoint variable (AV) method and a projected differentiation (PD) method. The proposed approach is called AV-PD. The vibratory system is excited by stationary Gaussian or non-Gaussian input random processes. A Karhunen-Loeve (KL) expansion expresses each input random process in terms of standard normal random variables. The nonlinear equations of motion (EOM) are linearized using a Taylor expansion using the first-order derivatives of the output with respect to the input KL random variables. An adjoint approach obtains the output derivatives accurately and efficiently requiring the solution of as many sets of EOM as the number of outputs of interest, independently of the number of KL random variables. The proposed PD method then computes the autocorrelation function of each output process at an additional cost of solving as many sets of EOM as the number of outputs of interest, independently of the time horizon (simulation time). A time-dependent reliability analysis is finally performed using a KL expansion of the output processes and Monte Carlo Simulation (MCS). The number of solutions of the EOM scales only with the number of output random processes which is commonly much smaller than the number of input KL random variables. The efficiency and accuracy of the proposed approach is demonstrated using a four degree-of-freedom (DOF) half-car vibratory problem.


Author(s):  
Zissimos P. Mourelatos ◽  
Monica Majcher ◽  
Vasileios Geroulas

The field of random vibrations of large-scale systems with millions of degrees of freedom is of significant importance in many engineering disciplines. In this paper, we propose a method to calculate the time-dependent reliability of linear vibratory systems with random parameters excited by non-stationary Gaussian processes. The approach combines principles of random vibrations, the total probability theorem and recent advances in time-dependent reliability using an integral equation involving the up-crossing and joint up-crossing rates. A space-filling design, such as optimal symmetric Latin hypercube sampling, is first used to sample the input parameter space. For each design point, the corresponding conditional time-dependent probability of failure is calculated efficiently using random vibrations principles to obtain the statistics of the output process and an efficient numerical estimation of the up-crossing and joint up-crossing rates. A time-dependent metamodel is then created between the input parameters and the output conditional probabilities allowing us to estimate the conditional probabilities for any set of input parameters. The total probability theorem is finally applied to calculate the time-dependent probability of failure. The proposed method is demonstrated using a vibratory beam example.


Author(s):  
Bogdan-Vasile Cioruța

The purpose of this study is to familiarize the reader with the diversity of concepts (notions) and stages of development specific to Probability Theory, with the definition and characterization of variables, vectors and random processes, respectively with the most important elements that give random processes. Among these we mention the distribution function, the probability density function, the statistical moments of a random process, the temporal averages, and respectively the correlation (and intercorrelation) of a random signal (process). Also, the implications of random processes in the study of dynamical systems are reviewed, as well as a series of applications specific to the analysis of dynamic behavior.


Sign in / Sign up

Export Citation Format

Share Document