Development of Recreating Space Technology for Pipe Joint Manufacturing System With a Dual Industrial Robot

Author(s):  
Sosuke Kuroyanagi ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Shinya Omori ◽  
Koichi Mori ◽  
...  

A technology has been developed for recreating in a pipe joint manufacturing plant the measurement space in the field. A dual industrial robot system checks whether each manufactured joint matches the measured positions and orientations of the two pipes to be connected before the joint is sent for installation. The accuracy of robot motion is estimated using off-line robot teaching control provided by a program based on computer-aided design data. A double ball bar (DBB) method is used to frequently check the accuracy of machine tool motion. Testing showed that the developed technology is sufficiently accurate once the positions used in the off-line teaching mode are revised on the basis of the errors in motion obtained with the DBB method.

Author(s):  
Adnan A Ugla ◽  
Oguzhan Yilmaz ◽  
Ahmed RJ Almusawi

Tungsten inert gas arc welding–based shaped metal deposition is a novel additive manufacturing technology which can be used for fabricating solid dense parts by melting a cold wire on a substrate in a layer-by-layer manner via continuous DC arc heat. The shaped metal deposition method would be an alternative way to traditional manufacturing methods, especially for complex featured and large-scale solid parts manufacturing, and it is particularly used for aerospace structural components, manufacturing, and repairing of die/molds and middle-sized dense parts. This article presents the designing, constructing, and controlling of an additive manufacturing system using tungsten inert gas plus wire–based shaped metal deposition method. The aim of this work is to design and develop tungsten inert gas plus wire–based shaped metal deposition system to be used for fabricating different components directly from computer-aided design data with minimum time consumed in programming and less boring task compared to conventional robotic systems. So, this article covers the important design steps from computer-aided design data to the final deposited part. The developed additive system is capable of producing near-net-shaped components of sizes not exceeding 400 mm in three-dimensional directly from computer-aided design drawing. The results showed that the developed system succeeded to produce near-net-shaped parts for various features of SS308LSi components. Additionally, workshop tests have been conducted in order to verify the capability and reliability of the developed additive manufacturing system. The developed system is also capable of reducing the buy-to-fly ratio from 5 to 2 by reducing waste material from 1717 to 268 g for the sample components.


2020 ◽  
Vol 3 (2) ◽  
pp. 31-32
Author(s):  
Paul Brian S. Mendez ◽  
Rizalie N.E. Mibato

Dentistry has evolved from its origin to the present day, becoming almost entirely digitized and supervised. The digitalized dental laboratory saves time due to computer-aided design and computer-aided manufacture (CAD/CAM) technology, which will capture and display clients' tooth or teeth and gums on a 3D image on a computer screen sent to the lab.  It enables a dental lab technician to work faster and get the perfect design of the digital dental restoration. The main advantage of digitalization includes faster and improved efficiency on the turn-around time of devices, like crowns and bridges, and improved accuracy of procedures and manufactured gadgets. Digitalization Dental Laboratory (DDL) is the first to offer a digital dental lab in the city of Bacolod. The service allows laboratories to design the prosthesis digitally from in-house CAD software and email the design data provider or download the data file into a proprietary web host or server. The lab will cater to the digital needs of dental patients of the Multi-Specialty Dental Center (a sister company of DDL) and other dental clients.


2013 ◽  
Vol 411-414 ◽  
pp. 1801-1804
Author(s):  
Yong Liu ◽  
Da Zheng Wang ◽  
Xue Shuang Len

This paper describes a strategy to fulfill the needs of the 21st century machinery manufacturing industry, especially for the industry that produces the low repetitive and high productmix components using machining centres. The approach of development strategy is emphasized in developing of computer integrated manufacturing system (CIMS). The system comprises of computer aided design (CAD) and computer aided manufacturing (CAM) modules, which is supported by common and working databases. Focuses on computer-integrated manufacturing's macro aspects and its future development strategy implications. Defines CIMS at the macro and micro level and the various factors that strongly call for the implementation of CIMS. After going into the advantages, concludes with development strategy implications for the future.


Sign in / Sign up

Export Citation Format

Share Document