A New Sequential Robust Approach for MDO Problems Under Mixed Interval and Probabilistic Uncertainties

Author(s):  
Tingting Xia ◽  
Mian Li

In the design process of complex multidisciplinary systems, uncertainties in parameters or variables cannot be ignored. Robust multidisciplinary design optimization methods (RMDOs) can treat uncertainties as specified probabilistic distributions when enough statistical information is available. RMDOs need to assign intervals for nondeterministic variables since some design quantities may not have enough information to obtain statistical distributions, especially in the early stage of a design optimization process. Both types of uncertainties are very likely to appear simultaneously. In order to obtain robust solutions for multidisciplinary design optimization problems under mixed interval and probabilistic uncertainties, this work proposed a new sequential robust MDO approach, mixed SR-MDO. First, the robust optimization problem in a single discipline under mixed uncertainties is formulated and solved. Then, following the SR-MDO framework in our early work, MDO problems under mixed uncertainties are solved by handling probabilistic and interval uncertainties sequentially in decomposed subsystem problems. Interval uncertainties are handled by using the worst-case sensitivity analysis and fixing probabilistic uncertainties at their mean first, and then the influence of probabilistic uncertainties in objectives, constraints as well as in discipline analysis models is characterized by corresponding mean and variance. The applied SR-MDO framework allows subsystems in its full autonomy robust optimization and sequential robust optimization stages to run independently in parallel. This makes mixed SR-MDO be efficient for independent disciplines to work simultaneously and be more time-saving. Computational complexity of the proposed approach mainly relates to the double-loop optimization process in the worst-case interval uncertainties analysis. Examples are presented to demonstrate the applicability and efficiency of the mixed SR-MDO approach.

Author(s):  
Tingting Xia ◽  
Mian Li

Uncertainties cannot be ignored in the design process of complex multidisciplinary systems. Robust multidisciplinary design optimization methods (RMDOs) can treat uncertainties as specified probabilistic distributions when enough statistical information is available while they assign intervals for nondeterministic variables since designers may not have enough information to obtain statistical distributions, especially in the early stage of design optimization processes. Both types of uncertainties are very likely to appear simultaneously. In order to obtain solutions to RMDO problems under mixed interval and probabilistic uncertainties, this work proposed a new sequential RMDO approach, mixed SR-MDO. First, the robust optimization (RO) problem in a single discipline under mixed uncertainties is formulated and solved. Then, following the SR-MDO framework from the previous work, MDO problems under mixed uncertainties are solved by handling probabilistic and interval uncertainties sequentially in decomposed subsystem problems. Interval uncertainties are handled by using the worst-case sensitivity analysis, and the influence of probabilistic uncertainties in objectives, constraints, as well as in discipline analysis models is characterized by corresponding mean and variance. The applied SR-MDO framework allows subsystems in its full autonomy RO and sequential RO stages to run independently in parallel. This makes mixed SR-MDO be efficient for independent disciplines to work simultaneously and be more time-saving. Computational complexity of the proposed approach mainly relates to the double-loop optimization process in the worst-case interval uncertainties analysis. Examples are presented to demonstrate the applicability and efficiency of the mixed SR-MDO approach.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401875472 ◽  
Author(s):  
Wei Sun ◽  
Xiaobang Wang ◽  
Maolin Shi ◽  
Zhuqing Wang ◽  
Xueguan Song

A multidisciplinary design optimization model is developed in this article to optimize the performance of the hard rock tunnel boring machine using the collaborative optimization architecture. Tunnel boring machine is a complex engineering equipment with many subsystems coupled. In the established multidisciplinary design optimization process of this article, four subsystems are taken into account, which belong to different sub-disciplines/subsytems: the cutterhead system, the thrust system, the cutterhead driving system, and the economic model. The technology models of tunnel boring machine’s subsystems are build and the optimization objective of the multidisciplinary design optimization is to minimize the construction period from the system level of the hard rock tunnel boring machine. To further analyze the established multidisciplinary design optimization, the correlation between the design variables and the tunnel boring machine’s performance is also explored. Results indicate that the multidisciplinary design optimization process has significantly improved the performance of the tunnel boring machine. Based on the optimization results, another two excavating processes under different geological conditions are also optimized complementally using the collaborative optimization architecture, and the corresponding optimum performance of the hard rock tunnel boring machine, such as the cost and energy consumption, is compared and analysed. Results demonstrate that the proposed multidisciplinary design optimization method for tunnel boring machine is reliable and flexible while dealing with different geological conditions in practical engineering.


Author(s):  
Mohammad Reza Farmani ◽  
Jafar Roshanian ◽  
Meisam Babaie ◽  
Parviz M Zadeh

This article focuses on the efficient multi-objective particle swarm optimization algorithm to solve multidisciplinary design optimization problems. The objective is to extend the formulation of collaborative optimization which has been widely used to solve single-objective optimization problems. To examine the proposed structure, racecar design problem is taken as an example of application for three objective functions. In addition, a fuzzy decision maker is applied to select the best solution along the pareto front based on the defined criteria. The results are compared to the traditional optimization, and collaborative optimization formulations that do not use multi-objective particle swarm optimization. It is shown that the integration of multi-objective particle swarm optimization into collaborative optimization provides an efficient framework for design and analysis of hierarchical multidisciplinary design optimization problems.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Shen Lu ◽  
Harrison M. Kim

Economic and physical considerations often lead to equilibrium problems in multidisciplinary design optimization (MDO), which can be captured by MDO problems with complementarity constraints (MDO-CC)—a newly emerging class of problem. Due to the ill-posedness associated with the complementarity constraints, many existing MDO methods may have numerical difficulties solving this class of problem. In this paper, we propose a new decomposition algorithm for the MDO-CC based on the regularization technique and inexact penalty decomposition. The algorithm is presented such that existing proofs can be extended, under certain assumptions, to show that it converges to stationary points of the original problem and that it converges locally at a superlinear rate. Numerical computation with an engineering design example and several analytical example problems shows promising results with convergence to the all-in-one solution.


2010 ◽  
Vol 44-47 ◽  
pp. 1135-1140 ◽  
Author(s):  
You Xin Luo ◽  
Hui Jun Wen ◽  
Heng Shu Li

In this paper, the basic concepts and methods of multidisciplinary design optimization, uncertainty analysis and robust design have been introduced. According to the features of a multi-functional open-air hydraulic drill, a new design theory called multidisciplinary robust optimization design was discussed. This theory can undertake uncertainty analysis and robust design in multidisciplinary design optimization. It fully considers both the synergy among each disciplinary or subsystem in the multi-functional open-air hydraulic drill to get the optimal solution to the whole system and the effect of the uncertainty factors upon the drill quality, and adopts the parallel design to improve the quality, robustness and reliability of the drill, to shorten the market cycles of products, to reduce product cost. Finally, the design points were discussed in detail in the paper.


2014 ◽  
Vol 571-572 ◽  
pp. 1083-1086
Author(s):  
Qiu Yun Mo ◽  
Fei Deng ◽  
Shuai Shuai Li ◽  
Ke Yan Zhang

Multidisciplinary design optimization (MDO) represents the development direction of complex products design theory and method, it shows a huge advantage in solving complex optimization problems in engineering applications, for example product design. This paper briefly analyzes some existing problems of small vertical wind turbine, and puts forward using the theory of MDO in small vertical wind turbine structural optimization. Then,the paper analyzes and points out the key technology of using MDO theory to optimize small vertical wind turbine, and provides a new train of thought for further in-depth study of small vertical wind turbine to improve the overall performance of the small vertical wind turbine products.


2015 ◽  
Vol 24 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Debiao Meng ◽  
Xiaoling Zhang ◽  
Yuan-Jian Yang ◽  
Huanwei Xu ◽  
Hong-Zhong Huang

Sign in / Sign up

Export Citation Format

Share Document