Design of Planar 1-DOF Cam-Linkages for Lower-Limb Rehabilitation via Kinematic-Mapping Motion Synthesis Framework

Author(s):  
Ping Zhao ◽  
Lihong Zhu ◽  
Xiangyun Li ◽  
Bin Zi

When designing linkage mechanisms for motion synthesis, many examples have shown that the optimal kinematic constraint on the task motion contain too large deviation to be approximately viewed as a single rotational or translational pair. In this paper we seek to adopt our previously established motion synthesis framework for the design of cam-linkages for a more accurate realization, while still maintaining a one-DOF mechanism. To determine a feasible cam to lead through the task motion, first a kinematic constraint is identified such that a moving point on the given motion traces a curve that is algebraically closest to a circle or a line. This leads to a cam contour that is simple and smooth to avoid the drawbacks of cam mechanisms. Additional constraints could also be imposed to specify the location and/or size of the cam-linkages. An example of the design of a lower-limb rehabilitation device has been presented in the end of this paper to illustrate the feasibility of our approach. It is shown that our design could lead the user through a normal walking motion.

2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Ping Zhao ◽  
Lihong Zhu ◽  
Bin Zi ◽  
Xiangyun Li

When designing linkage mechanisms for motion synthesis, many examples have shown that the optimal kinematic constraint on the task motion contains too large deviation to be approximately viewed as a single rotational or translational pair. In this paper, we seek to adopt our previously established motion synthesis framework for the design of cam-linkages for a more accurate realization, while still maintaining a 1-degree-of-freedom (DOF) mechanism. To determine a feasible cam to lead through the task motion, first a kinematic constraint is identified such that a moving point on the given motion traces a curve that is algebraically closest to a circle or a line. This leads to a cam with low-harmonic contour curve that is simple and smooth to avoid the drawbacks of cam mechanisms. Additional constraints could also be imposed to specify the location and/or size of the cam linkages. An example of the design of a lower-limb rehabilitation device has been presented at the end of this paper to illustrate the feasibility of our approach. It is shown that our design could lead the user through a normal walking motion.


Author(s):  
Jingang Jiang ◽  
Xuefeng Ma ◽  
Biao Huo ◽  
Xiaoyang Yu ◽  
Xiaowei Guo ◽  
...  

2014 ◽  
Vol 672-674 ◽  
pp. 1770-1773 ◽  
Author(s):  
Fu Cheng Cao ◽  
Li Min Du

Aimed at improving the dynamic response of the lower limb for patients, an impedance control method based on sliding mode was presented to implement an active rehabilitation. Impedance control can achieve a target-reaching training without the help of a therapist and sliding mode control has a robustness to system uncertainty and vary limb strength. Simulations demonstrate the efficacy of the proposed method for lower limb rehabilitation.


2021 ◽  
Vol 92 ◽  
pp. 107103
Author(s):  
José Saúl Muñoz-Reina ◽  
Miguel Gabriel Villarreal-Cervantes ◽  
Leonel Germán Corona-Ramírez

2020 ◽  
Author(s):  
Nurul Hasyikin Hasmuni Chew ◽  
Siti Marwangi Mohamad Maharum ◽  
Zuhanis Mansor ◽  
Irfan Abd Rahim

Author(s):  
Deyby Huamanchahua ◽  
Yerson Taza-Aquino ◽  
Jhon Figueroa-Bados ◽  
Jason Alanya-Villanueva ◽  
Adriana Vargas-Martinez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document