Impedance Control Based Sliding Mode for Lower Limb Rehabilitation Robot

2014 ◽  
Vol 672-674 ◽  
pp. 1770-1773 ◽  
Author(s):  
Fu Cheng Cao ◽  
Li Min Du

Aimed at improving the dynamic response of the lower limb for patients, an impedance control method based on sliding mode was presented to implement an active rehabilitation. Impedance control can achieve a target-reaching training without the help of a therapist and sliding mode control has a robustness to system uncertainty and vary limb strength. Simulations demonstrate the efficacy of the proposed method for lower limb rehabilitation.

2021 ◽  
Vol 11 (21) ◽  
pp. 10329
Author(s):  
Yuepeng Zhang ◽  
Guangzhong Cao ◽  
Wenzhou Li ◽  
Jiangcheng Chen ◽  
Linglong Li ◽  
...  

Lower limb rehabilitation exoskeleton robots have the characteristics of nonlinearity and strong coupling, and they are easily disturbed during operation by environmental factors. Thus, an accurate dynamic model of the robot is difficult to obtain, and achieving trajectory tracking control of the robot is also difficult. In this article, a self-adaptive-coefficient double-power sliding mode control method is proposed to overcome the difficulty of tracking the robot trajectory. The method combines an estimated dynamic model with sliding mode control. A nonlinear control law was designed based on the robot dynamics model and computational torque method, and a compensation term of control law based on double-power reaching law was introduced to reduce the disturbance from model error and environmental factors. The self-adaptive coefficient of the compensation term of the control law was designed to adaptively adjust the compensation term to improve the anti-interference ability of the robot. The simulation and experiment results show that the proposed method effectively improves the trajectory tracking accuracy and anti-interference ability of the robot. Compared with the traditional computed torque method, the proposed method decreases the tracking error by more than 71.77%. The maximum absolute error of the hip joint and knee joint remained below 0.55° and 1.65°, respectively, in the wearable experiment of the robot.


2017 ◽  
Vol 11 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Vahab Khoshdel ◽  
Alireza Akbarzadeh ◽  
Nadia Naghavi ◽  
Ali Sharifnezhad ◽  
Mahdi Souzanchi-Kashani

2013 ◽  
Vol 310 ◽  
pp. 444-447 ◽  
Author(s):  
Yue Wen Li ◽  
Lin Yong Shen

The acquisition of the patients’ active force is the key process to realize the active rehabilitation function of lower limb rehabilitation robot. This paper analyzes the relationship of human-machine coupling force and patients’ active force, based on what put forward a proposal to acquire the active force .A sensor is designed to detect the human-machine coupling force and a stress analysis is carried on based on the actual usage of the sensor. The scheme of the stress foil arrangement and bridge circuit design are discussed in the paper. And a FEA is also carried out to analyze the strain situation of the elastomer.


2015 ◽  
Vol 738-739 ◽  
pp. 991-994
Author(s):  
Fu Cheng Cao ◽  
Hong Wu Qin

Human as a varying dynamic system, the control strategies of human-robot interacts differ significantly from that of conventional industrial robot. Considered the patient-centered exercise regimens, a force control method based predict is presented to control a lower limb rehabilitation robot. The control law is introduced that optimises the the maintained force level and limits excessive forceto injury the subject's lower extremity joints. Simulation results show that the robot could guide thelower limb of subjects to move under predefined model of the external force.


Sign in / Sign up

Export Citation Format

Share Document