A New Fabrication Process for Microstructures With High Area-to-Mass Ratios by Stiffness Enhancement

Author(s):  
Zhongjing Ren ◽  
Jianping Yuan ◽  
Xiaoyu Su ◽  
Hao Sun ◽  
Richard Galos ◽  
...  

A new fabrication process for stiffness-enhanced microstructures with high area-to-mass ratios is presented in this paper. In order to acquire an enhanced stiffness without ruining the structural parameter of area-to-mass ratio, multilayered metallic microstructures are proposed and fabricated by surface and bulk fabrication processes from Micro-Electro-Mechanical Systems (MEMS) technologies. Microstructures based on beams with symmetrically deposited metals are physically built and tested on wafers. A sacrificial silicon layer is used to form gaps between bimetal layers and the microstructures can be deployed vertically when heated due to the effect of thermal mismatch between different materials. The results show a dramatic thickness increase when actuated by Joule heating, and thus a great bending stiffness enhancement.

2007 ◽  
Vol 1052 ◽  
Author(s):  
Sudhir Chandra ◽  
Ravindra Singh

AbstractIn the present work, we report a new fabrication process to integrate the “c-axis oriented” ZnO films with bulk-micromachined silicon diaphragms. ZnO films are very sensitive to the chemicals used in the micro-electro-mechanical systems (MEMS) fabrication process which include acids, bases and etchants of different material layers (e.g. SiO2, chromium, gold etc.). A Si3N4 layer is incorporated to protect the ZnO film from the etchants of chromium and gold used for patterning the electrodes. A mechanical jig is used for protecting the front side (ZnO film side) of the wafer from ethylenediamine pyrocatechol water (EPW) during the anisotropic etching of silicon. The resistivity measurement performed on the ZnO film integrated with micro-diaphragm shows the reliability of the fabrication process proposed in this work.


2011 ◽  
Vol 36 (7) ◽  
pp. 1089 ◽  
Author(s):  
Wei-Chao Chiu ◽  
Chun-Che Chang ◽  
Jiun-Ming Wu ◽  
Ming-Chang M. Lee ◽  
Jia-Min Shieh

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1228 ◽  
Author(s):  
Dorothy Anne Hardy ◽  
Zahra Rahemtulla ◽  
Achala Satharasinghe ◽  
Arash Shahidi ◽  
Carlos Oliveira ◽  
...  

Electronically active yarn (E-yarn) pioneered by the Advanced Textiles Research Group of Nottingham Trent University contains a fine conductive copper wire soldered onto a package die, micro-electro-mechanical systems device or flexible circuit. The die or circuit is then held within a protective polymer packaging (micro-pod) and the ensemble is inserted into a textile sheath, forming a flexible yarn with electronic functionality such as sensing or illumination. It is vital to be able to wash E-yarns, so that the textiles into which they are incorporated can be treated as normal consumer products. The wash durability of E-yarns is summarized in this publication. Wash tests followed a modified version of BS EN ISO 6330:2012 procedure 4N. It was observed that E-yarns containing only a fine multi-strand copper wire survived 25 cycles of machine washing and line drying; and between 5 and 15 cycles of machine washing followed by tumble-drying. Four out of five temperature sensing E-yarns (crafted with thermistors) and single pairs of LEDs within E-yarns functioned correctly after 25 cycles of machine washing and line drying. E-yarns that required larger micro-pods (i.e., 4 mm diameter or 9 mm length) were less resilient to washing. Only one out of five acoustic sensing E-yarns (4 mm diameter micro-pod) operated correctly after 20 cycles of washing with either line drying or tumble-drying. Creating an E-yarn with an embedded flexible circuit populated with components also required a relatively large micro-pod (diameter 0.93 mm, length 9.23 mm). Only one embedded circuit functioned after 25 cycles of washing and line drying. The tests showed that E-yarns are suitable for inclusion in textiles that require washing, with some limitations when larger micro-pods were used. Reduction in the circuit’s size and therefore the size of the micro-pod, may increase wash resilience.


2008 ◽  
Vol 3 (1) ◽  
pp. 37-43
Author(s):  
Lianqun Zhou ◽  
Yihui Wu ◽  
Ping Zhang ◽  
Ming Xuan ◽  
Zhenggang Li ◽  
...  

Author(s):  
M. Martinez ◽  
B. Rocha ◽  
M. Li ◽  
G. Shi ◽  
A. Beltempo ◽  
...  

The National Research Council of Canada has developed Structural Health Monitoring (SHM) test platforms for load and damage monitoring, sensor system testing and validation. One of the SHM platform consists of two 2.25 meter long, simple cantilever aluminium beams that provide a perfect scenario for evaluating the capability of a load monitoring system to measure bending, torsion and shear loads. In addition to static and quasi-static loading procedures, these structures can be fatigue loaded using a realistic aircraft usage spectrum while SHM and load monitoring systems are assessed for their performance and accuracy. In this study, Micro-Electro-Mechanical Systems (MEMS), consisting of triads of gyroscopes, accelerometers and magnetometers, were used to compute changes in angles at discrete stations along the structure. A Least Squares based algorithm was developed for polynomial fitting of the different data obtained from the MEMS installed in several spatial locations of the structure. The angles obtained from the MEMS sensors were fitted with a second, third and/or fourth order degree polynomial surface, enabling the calculation of displacements at every point. The use of a novel Kalman filter architecture was evaluated for an accurate angle and subsequent displacement estimation. The outputs of the newly developed algorithms were then compared to the displacements obtained from the Linear Variable Displacement Transducers (LVDT) connected to the structures. The determination of the best Least Squares based polynomial fit order enabled the application of derivative operators with enough accuracy to permit the calculation of strains along the structure. The calculated strain values were subsequently compared to the measurements obtained from reference strain gauges installed at different locations on the structure. This new approach for load monitoring was able to provide accurate estimates of applied strains and loads.


Author(s):  
Michael Oswald ◽  
Sven Flegel ◽  
Sebastian Stabroth ◽  
Carsten Wiedemann ◽  
Peter Vörsmann ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document