rf sputtering
Recently Published Documents


TOTAL DOCUMENTS

1930
(FIVE YEARS 202)

H-INDEX

51
(FIVE YEARS 7)

Author(s):  
Ashish Kumar ◽  
Arathy Varghese ◽  
Vijay Janyani

AbstractThis work presents the performance evaluation of Graphene/ZnO Schottky junctions grown on flexible indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates. The fabricated structures include chemical vapour deposition grown graphene layer on ITO-coated PET substrates. Polymethyl methacrylate assisted transfer method has been employed for the successful transfer of graphene from Cu substrate to PET. The smaller D-band intensity (1350 cm−1) compared to G-band (1580 cm−1) indicates good quality of carbon lattice with less number of defects. High-quality ZnO has been deposited through RF sputtering. The deposited ZnO with grain size 50–95 nm exhibited dislocation densities of 1.31270 × 10–3 nm−2 and compressive nature with negative strain of − 1.43156 GPa. Further, the electrical and optical characterization of the devices has been done through device I–V characterization and UV detection analysis. The UV detection capability of the device has been carried out with the aid of a UV-lamp of 365 nm wavelength. The fabricated graphene/ZnO photodetector showed good response to UV illumination. The device performance analysis has been done through a comparison of the device responsivity and detectivity with the existing detectors. The detectivity and responsivity of the fabricated detectors were 7.106 × 109 mHz1/2 W−1 and 0.49 A W−1, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
L. Natrayan ◽  
Anjibabu Merneedi ◽  
Dhinakaran Veeman ◽  
S. Kaliappan ◽  
P. Satyanarayana Raju ◽  
...  

The diamond-like carbon- (DLC-) coating technique is used in the sliding parts of automotive engines, among other applications, to reduce friction and wear. In this work, DLC has been coated on the Aluminium 5051 sample to assess the mechanical and tribological properties. A sputtering deposition mechanism is used, and the DLC is coated using a graphite target. The developed DLC coatings are tested for adhesion strength, hardness, chemical composition using XRD, and wear behaviour. The developed DLC thin films have considerably increased the wear behaviour of the Aluminium 5051 sample and have fulfilled the objective of this study. The XRD data indicated the presence of amorphous carbon in the coating with a threefold increase to the hardness of the naked aluminium. This study provides insight into improving the aluminium wear resistance by developing a considerably hard coating.


2021 ◽  
pp. 3536-3544
Author(s):  
Bakr F. Hassan ◽  
Mohammed J. Dathan ◽  
Anas A. Abdallah

     In this work, vanadium pentoxide (V2O5) thin films were prepared using rf magnetron sputtering on silicon wafer and glass substrates from V2O5 target at 200 °C substrate temperature, followed by annealing at 400 and 500 °C in air for 2 h. The prepared thin films were examined by X-ray diffraction (XRD), forier transform infra-red spectroscopy (FTIR), UV-visible absorbance, and direct current coductivity to study the effects of annealing temperature on their structural and optical properties. The XRD analysis exhibited that the annealing promoted the highly crystallized V2O5 phase that is highly orientated along the c direction. The crystalline size increased from 22.5 nm to 35.4 nm with increasing the annealing temperature to 500 °C. The FTIR spectroscopy showed the enhancement of the characteristics band for the V2O5 with increasing annealing temperature to 500 °C. The optical study showed that the energy gap for the sample deposited on glass slides decreased from 2.85 eV, for as deposited sample, to 2.6 eV upon annealing the sample to 500 °C. There was a linear dependence between sensitivity and relative humidity (RH) at the range from 25% to 70%, while the behavior was exponential  at high RH range.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1355
Author(s):  
Vignesh Gunasekaran ◽  
Soffian Yjjou ◽  
Eve Hennequin ◽  
Thierry Camps ◽  
Nicolas Mauran ◽  
...  

The development of “portable, low cost and low consumption” gas microsensors is one of the strong needs for embedded portable devices in many fields such as public domain. In this paper, a new approach is presented on making, on the same chip, a network of head-to-tail facing PN junctions in order to miniaturize the sensor network and considerably reduce the required power for heating each cell independently. This paper is about recognizing a device that integrates both sensing and self-heating. This first study aims to evaluate the possibilities of this type of diode network for use as a gas sensor. The first part concerns the description of the technological process that is based on a doped polysilicon wafer in which a thin layer of metal oxide (a gallium-doped zinc oxide in our case) is deposited by RF sputtering. An electrical model will be proposed to explain the operation and advantage of this approach. We will show the two types of tests that have been carried out (static and dynamic) as well as the first encouraging results of these electrical characterizations under variable atmospheres.


Author(s):  
Agham B. Posadas ◽  
Hyoju Park ◽  
Marc Reynaud ◽  
Wei Cao ◽  
Jamie D. Reynolds ◽  
...  

Chemosensors ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 295
Author(s):  
Didier Fasquelle ◽  
Nathalie Verbrugghe ◽  
Stéphanie Députier

Tungsten trioxide thin films were deposited on silicon substrates by non-reactive RF sputtering from a WO3 target at room temperature. The WO3 films were post-annealed at two different temperatures, 400 °C and 500 °C. The morphological and microstructural properties of these films were analyzed by using atomic force microscopy and X-ray diffraction. X-ray diffraction patterns only show WO3 oxide phases. The AFM images show different morphologies with smaller grains for the film annealed at 400 °C. WO3 sensing films and W heating elements were embedded in commercial cases for the fabrication of cost-effective gas sensors. The sensitivity and dynamic response of the sensors were analyzed under various concentrations of H2S, from 20 to 100 ppm, at SIMTRONICS SAS (3M Company, Saint Paul, MN, USA). A good sensitivity G/G0 of about 6.6 under H2S 100 ppm was obtained with the best sensor. An interesting dynamic response was observed in particular with a short response time. Additionally, the evolution of the sensitivity was studied, and a conduction model was proposed for explaining the conduction mechanism under H2S exposition.


2021 ◽  
Vol 59 (10) ◽  
pp. 718-723
Author(s):  
Myoungsuk Kang ◽  
Jiwan Kim

We report a highly efficient quantum dot light emitting diode (QLEDs) with a radio frequency (RF) sputtered ZnO thin film as an electron transport layer (ETL) instead of the conventional ZnO nanoparticles (NPs) by solution process. ZnO NPs have been used as a key material to improve the performance of QLEDs, but the charge imbalance in ZnO NPs resulting from fast electron injection, and their limited uniformity are significant disadvantages. In this study, ZnO layers were deposited by RF sputtering with various O2 partial pressures. All of the ZnO films showed preferential growth along the (002) direction, smooth morphology, and good optical transmittance. To test their feasibility for QLEDs, we fabricated devices with RF sputtered ZnO layers as an ETL, which has the inverted structure of ITO/RF sputtered ZnO/QDs/CBP/MoO3/Al. The optical/electrical characteristics of two devices, comprised of RF sputtered ZnO and ZnO NPs, were compared with each other. QLEDs with the sputtered ZnO ETL achieved a current efficiency of 11.32 cd/A, which was higher than the 8.23 cd/A of the QLEDs with ZnO NPs ETL. Next, to find the optimum ZnO thin film for highly efficient QLEDs, deposition conditions with various O2 partial pressures were tested, and device performance was investigated. The maximum current efficiency was 13.33 cd/A when the ratio of Ar/O2 was 4:3. Additional oxygen gas reduced the O vacancies in the ZnO thin film, which resulted in a decrease in electrical conductivity, thereby improving charge balance in the emission layer of the QLEDs. As a result, we provide a way to control the ZnO ETL properties and to improve device performance by controlling O2 partial pressure.


2021 ◽  
Vol 59 (10) ◽  
pp. 730-735
Author(s):  
Myoungsuk Kang ◽  
Jiwan Kim

We report a highly efficient quantum dot light emitting diode (QLEDs) with a radio frequency (RF) sputtered ZnO thin film as an electron transport layer (ETL) instead of the conventional ZnO nanoparticles (NPs) by solution process. ZnO NPs have been used as a key material to improve the performance of QLEDs, but the charge imbalance in ZnO NPs resulting from fast electron injection, and their limited uniformity are significant disadvantages. In this study, ZnO layers were deposited by RF sputtering with various O2 partial pressures. All of the ZnO films showed preferential growth along the (002) direction, smooth morphology, and good optical transmittance. To test their feasibility for QLEDs, we fabricated devices with RF sputtered ZnO layers as an ETL, which has the inverted structure of ITO/RF sputtered ZnO/QDs/CBP/MoO3/Al. The optical/electrical characteristics of two devices, comprised of RF sputtered ZnO and ZnO NPs, were compared with each other. QLEDs with the sputtered ZnO ETL achieved a current efficiency of 11.32 cd/A, which was higher than the 8.23 cd/A of the QLEDs with ZnO NPs ETL. Next, to find the optimum ZnO thin film for highly efficient QLEDs, deposition conditions with various O2 partial pressures were tested, and device performance was investigated. The maximum current efficiency was 13.33 cd/A when the ratio of Ar/O2 was 4:3. Additional oxygen gas reduced the O vacancies in the ZnO thin film, which resulted in a decrease in electrical conductivity, thereby improving charge balance in the emission layer of the QLEDs. As a result, we provide a way to control the ZnO ETL properties and to improve device performance by controlling O2 partial pressure.


2021 ◽  
Vol 2075 (1) ◽  
pp. 012015
Author(s):  
Abdullah Taha Ali ◽  
W. Maryam ◽  
Yu-Wei Huang ◽  
H.C. Hsu ◽  
Naser M. Ahmed ◽  
...  

Abstract The random laser was investigated in gold-doped Zinc Oxide nanorods (Au-doped ZnO NRs) under a range of pumping power 0.25 - 4.66 mW. The Au-doped ZnO NRs prepared by chemical bath deposition (CBD) on the ZnO seed layer, were pre-coated on glass substrate using radio frequency magnetron sputtering (Rf-sputtering). The morphological of Au-doped ZnO NRs shows a hexagonal and strong vertically alignment against the substrate. The Energy dispersive spectroscopy (EDX) spectrum and elemental mapping results confirmed that Au atoms (at.%) are doped and spread over the ZnO NRs. More interestingly, the random laser of Au-doped ZnO shows a redshift of ~38 nm. This study showed the ability of using doping as a tuning parameter in the random laser, also provided an emphasis on Au-doped ZnO NRs as suitable options for controllable random laser devices.


Sign in / Sign up

Export Citation Format

Share Document