Feature Extraction and Operation Sequencing for Machining on Mill-Turns

Author(s):  
Debaslsh Dutta ◽  
Yong Se Kim ◽  
Youngjin Kim ◽  
Eric Wang ◽  
Derek Yip-Hoi

Abstract An integrated system to support both product and manufacturing process design should be such that (1) the part design can be evaluated and redesigned based on manufacturability analysis and (2) the manufacturing processes can be selected efficiently and flexibly exploiting product information provided by part design representations. In this paper, we describe the collaborative research of the University of Illinois at Urbana-Champaign (UIUC) and the University of Michigan (UM) in computer-aided process planning for mill-turn machining. The UIUC geometric reasoning system based on convex decomposition identifies the machining features and maps the negative feature volumes to machining process methods, and generates geometry-based machining precedence relations. The UM process planning system based on genetic algorithm determines machining process sequences and assignment to multiple spindles and turrets.

2017 ◽  
Vol 11 (2) ◽  
pp. 242-250 ◽  
Author(s):  
Kenta Koremura ◽  
◽  
Yuki Inoue ◽  
Keiichi Nakamoto

In the manufacturing industry, there is an urgent need to shorten the manufacturing lead time of products. Therefore, optimizing process planning is essential to realize high efficiency machining. In this study, in order to develop a computer aided process planning (CAPP) system using previously proposed machining features, a prediction method for some process evaluation indices is proposed. Many candidates for the machining process exist, depending on the recognized machining features in a previous study. Therefore, by using these indices, operators can select a suitable process from among these candidates according to their ideas. Case studies of process planning are conducted to confirm that the operator’s strategy affects the selection of the machining process candidates. From the case study results, it is found that the proposed process evaluation indices have potential use in determining the machining process utilized, and are suitable for a flexible CAPP system of multi-tasking machine tools.


2014 ◽  
Vol 8 (3) ◽  
pp. 317-332 ◽  
Author(s):  
Mohammad Mi’radj Isnaini ◽  
◽  
Keiichi Shirase

The need to integrate the design and machining stages has become an important issue since the introduction of the Computer-Integrated Manufacturing (CIM) concept. The development of the Computer-Aided Process Planning (CAPP) system has been recognized to have made a significant contribution toward fulfilling the requirement for an integrated planning system. This paper reviews the development of the CAPP system, particularly for the metal removal process. Previous reviews on CAPP are gathered and discussed to show the evolution stage of CAPP in general. Main research topics that contribute to the CAPP system development are shown. Six elements of the CAPP system are identified as the most important tasks in generating a process plan. These elements consist of: (1) model convention, (2) manufacturing operation selection, (3) manufacturing resource selection, (4) cutting condition selection, (5) tool path selection, and (6) setup selection. Six elements for the development of CAPP that contribute to process planning for metal removal process are discussed. The evolution stages of each element easily show the involvement of several tools in order to support the corresponding element. For further guidance, the methods of comprehending the involvement of manufacturing information in CAPP are discussed. Knowledge structuring and logic reasoning are the main organizational steps that can be used to describe the CAPP data architecture of manufacturing information. Further, the examples of full-scale CAPP in actualizing machining process planning are presented. Finally, key technologies for future development of CAPP are discussed.


Author(s):  
Yaoyao F. Zhao ◽  
Xun W. Xu ◽  
Sheng Q. Xie

Closed-Loop Manufacturing (CLM) techniques include machine tool self-checks, automated setups, tool measurement, in-process probing with process adjustment, on-machine final inspection, data collection and data analysis. All of these elements and more are utilized to collect data in a mostly automated fashion to subsequently correct and adjust undesired conditions that can affect part quality. Inspection process planning plays an essential part of CLM. As G&M codes that contains low-level information or vendor-specific bespoke routines is the primary programming language, inspection process planning is mostly isolated from machining process planning. With the development of new data model standards such as STEP and STEP-NC providing high-level product information for the entire manufacturing chain, it is conceivable that both machining and inspection process planning are considered hand-in-hand to generate optimal machining and inspection sequences with real-time measurement feedback for the CLM scenario. This paper introduces an reactive process planning system architecture that incorporates machining, inspection, and feedback. In order to provide real-time inspection feedback, On-Machine Measurement (OMM) is chosen to carry out inspection operations. Implementation of the proposed architecture has been partially carried out with newly developed data model and interpreter. A case study testified the feasibility of the proposed architecture.


2017 ◽  
Vol 45 (1) ◽  
pp. 13 ◽  
Author(s):  
Dušan Šormaz ◽  
Mayur Wakhare ◽  
Nur-Ul Arafat

Computer aided process planning is a critical link between design and manufacturing. The ready process plan in integration of design and manufacturing is always important to save manufacturing time, reduction of work in progress. This paper describes a rule based intelligent process planning system which selects necessary manufacturing processes features in the metal mechanical parts. Novel feature of this system is the use of detailed GD&T specification on both process selection and setup planning modules. Process selection module selects the necessary processes for manufacturing the hole feature that depends on feature dimensions, feature precedence, and specified geometric and dimensional tolerances. Setup planning module determines the sequences of the setups of the prismatic part on the machine tools that includes clustering and sequencing of the features in setups. This module uses rules for the following steps: tool approach direction definition, setup formation based on GD&T requirements, resolution of possible cyclic setups, setup sequencing and operation sequencing in setups. Rules can generate valid setups for both 3-axis and 4-axis milling machines. The procedures are illustrated on several examples.


Author(s):  
Derek Yip-Hoi ◽  
Debasish Dutta

Abstract Parallel machines represent a new generation of machine tool. Through reducing the number of setups both the efficiency and the accuracy of the machining process is increased within the part domain. While Flexible Manufacturing Systems (FMSs) and Machining Cells (MCs) are said to be agile, the parallel machine is the first stand-alone machine which can claim to have this property. This makes them ideally suited for machining small batch sizes and for rapid prototyping. Unfortunately like FMSs and MCs these machines will be largely underutilized if agile data generation, processing and transfer mechanisms are not incorporated into CAD/CAM systems. One major hurdle to achieving this objective is the development of an automatic process planning system for parallel machines. This presents new challenges beyond those encountered in process planning for sequential machining. In this paper we discuss two aspects of parallel machines which impact on process planning. These are (1) the part domain for parallel machines and (2) the machine configuration.


Author(s):  
Y. F. Zhang ◽  
A. Y. C. Nee ◽  
J. Y. H. Fuh

Abstract One of the most difficult tasks in automated process planning is the determination of operation sequencing. This paper describes a hybrid approach for identifying the optimal operation sequence of machining prismatic parts on a three-axis milling machining centre. In the proposed methodology, the operation sequencing is carried out in two levels of planning: set-up planning and operation planning. Various constraints on the precedence relationships between features are identified and rules and heuristics are created. Based on the precedence relationships between features, an optimization method is developed to find the optimal plan(s) with minimum number of set-ups in which the conflict between the feature precedence relationships and set-up sequence is avoided. For each set-up, an optimal feature machining sequence with minimum number of tool changes is also determined using a developed algorithm. The proposed system is still under development and the hybrid approach is partially implemented. An example is provided to demonstrate this approach.


Author(s):  
Yong Se Kim ◽  
Eric Wang ◽  
Choong Soo Lee ◽  
Hyung Min Rho

Abstract This paper presents a feature-based method to support machining sequence planning. Precedence relations among machining operations are systematically generated based on geometric information, tolerance specifications, and machining expertise. The feature recognition method using Alternating Sum of Volumes With Partitioning (ASVP) Decomposition is applied to obtain a Form Feature Decomposition (FFD) of a part model. Form features are classified into a taxonomy of atomic machining features, to which machining process information has been associated. Geometry-based precedence relations between features are systematically generated using the face dependency information obtained by ASVP Decomposition and the features’ associated machining process information. Multiple sets of precedence relations are generated as alternative precedence trees, based on the feature types and machining process considerations. These precedence trees are further enhanced with precedence relations from tolerance specifications and machining expertise. Machining sequence planning is performed for each of these precedence trees, applying a matrix-based method to reduce the search space while minimizing the number of tool changes. The precedence trees may then be evaluated based on machining cost and other criteria. The precedence reasoning module and operation sequence planning module are currently being implemented within a comprehensive Computer-Aided Process Planning system.


Author(s):  
Yaoyao F. Zhao ◽  
Xun W. Xu ◽  
Sheng Q. Xie ◽  
Tom R. Kramer ◽  
Fred M. Proctor ◽  
...  

Inspection is an essential part of the entire manufacturing chain providing measurement feedback to the process planning system. Fully automated machining requires automatic inspection process planning and real-time inspection results feedback. As inspection process planning is still based on G&M codes containing low-level information or vendor-specific bespoke routines, inspection process planning is mostly isolated from machining process planning. With the development of new data model standards STEP and STEP-NC providing high-level product information for the entire manufacturing chain, it is achievable to combine machining and inspection process planning to generate optimal machining and inspection sequences with real-time measurement results feedback. This paper introduces an integrated process planning system architecture for combined machining and inspection. In order to provide real-time inspection feedback, On-Machine Inspection (OMI) is chosen to carry out inspection operations. Implementation of the proposed architecture has been partially carried out with a newly developed data model and interpreter software. A case study was carried out to test the feasibility of the proposed architecture.


Sign in / Sign up

Export Citation Format

Share Document