scholarly journals A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles

Author(s):  
Scott J. Moura ◽  
Hosam K. Fathy ◽  
Duncan S. Callaway ◽  
Jeffrey L. Stein

This paper examines the problem of optimally splitting driver power demand among the different actuators (i.e., the engine and electric machines) in a plug-in hybrid electric vehicle (PHEV). Existing studies focus mostly on optimizing PHEV power management for fuel economy, subject to charge sustenance constraints, over individual drive cycles. This paper adds three original contributions to this literature. First, it uses stochastic dynamic programming to optimize PHEV power management over a distribution of drive cycles, rather than a single cycle. Second, it explicitly trades off fuel and electricity usage in a PHEV, thereby systematically exploring the potential benefits of controlled charge depletion over aggressive charge depletion followed by charge sustenance. Finally, it examines the impact of variations in relative fuel-to-electricity pricing on optimal PHEV power management. The paper focuses on a single-mode powersplit PHEV configuration for mid-size sedans, but its approach is extendible to other configurations and sizes as well.

2020 ◽  
Vol 18 (2) ◽  
pp. 128-143
Author(s):  
Arigela Satya Veerendra ◽  
Mohd Rusllim Mohamed ◽  
Pui Ki Leung ◽  
Akeel Abbas Shah

2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096262
Author(s):  
Yupeng Zou ◽  
Ruchen Huang ◽  
Xiangshu Wu ◽  
Baolong Zhang ◽  
Qiang Zhang ◽  
...  

A power-split hybrid electric vehicle with a dual-planetary gearset is researched in this paper. Based on the lever analogy method of planetary gearsets, the power-split device is theoretically modeled, and the driveline simulation model is built by using vehicle modeling and simulation toolboxes in MATLAB. Six operation modes of the vehicle are discussed in detail, and the kinematic constraint behavior of power sources are analyzed. To verify the rationality of the modeling, a rule-based control strategy (RB) and an adaptive equivalent consumption minimization strategy (A-ECMS) are designed based on the finite state machine and MATLAB language respectively. In order to demonstrate the superiority of A-ECMS in fuel-saving and to explore the impact of different energy management strategies on emission, fuel economy and emission performance of the vehicle are simulated and analyzed under UDDS driving cycle. The simulation results of the two strategies are compared in the end, shows that the modeling is rational, and compared with RB strategy, A-ECMS ensures charge sustaining better, enables power sources to work in more efficient areas, and improves fuel economy by 8.65%, but significantly increases NOx emissions, which will be the focus of the next research work.


Sign in / Sign up

Export Citation Format

Share Document