Spatial Prediction With Mobile Sensor Networks Using Gaussian Process Regression Based on Gaussian Markov Random Fields

Author(s):  
Yunfei Xu ◽  
Jongeun Choi

In this paper, a new class of Gaussian processes is proposed for resource-constrained mobile sensor networks. Such a Gaussian process builds on a GMRF with respect to a proximity graph over a surveillance region. The main advantages of using this class of Gaussian processes over standard Gaussian processes defined by mean and covariance functions are its numerical efficiency and scalability due to its built-in GMRF and its capability of representing a wide range of non-stationary physical processes. The formulas for Bayesian posterior predictive statistics such as prediction mean and variance are derived and a sequential field prediction algorithm is provided for sequentially sampled observations. For a special case using compactly supported kernels, we propose a distributed algorithm to implement field prediction by correctly fusing all observations in Bayesian statistics. Simulation results illustrate the effectiveness of our approach.

Author(s):  
Yunfei Xu ◽  
Jongeun Choi

In this paper, we introduce a family of spatio-temporal Gaussian processes specified by a class of covariance functions. Nonparametric prediction based on truncated observations is proposed for mobile sensor networks with limited memory and computational power. We show that there is a trade-off between precision and efficiency when prediction based on truncated observations is used. Next, we propose both centralized and distributed navigation strategies for mobile sensor networks to move in order to reduce prediction error variances at positions of interest. Simulation results demonstrate the effectiveness of the proposed schemes.


Author(s):  
Derek A. Paley ◽  
Artur Wolek

The control of mobile sensor networks uses sensor measurements to update a model of an unknown or estimated process, which in turn guides the collection of subsequent measurements—a feedback control framework called adaptive sampling. Applications for adaptive sampling exist in a wide range of settings, especially for unmanned or autonomous vehicles that can be deployed cheaply and in cooperative groups. The dynamics of mobile sensor platforms are often simplified to planar self-propelled particles subject to the ambient flow of the surrounding fluid. Sensor measurements are assimilated into continuous or discrete models of the process of interest, which in general can vary in space and time. The variability of the estimated process is one metric to score future candidate sampling trajectories, along with information- and uncertainty-based metrics. Sampling tasks are allocated to the network using centralized or decentralized optimization, in order to avoid redundant measurements and observational gaps.


Sign in / Sign up

Export Citation Format

Share Document