On the Prediction of the Strain Rate Intensity Factor in Metal Forming Processes

Author(s):  
Elena Lyamina

The strain rate intensity factor is the coefficient of the principal singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Such singular behaviour occurs in the case of several rigid plastic models (rigid perfectly plastic solids, the double-shearing model, the double slip and rotation model, some of viscoplastic models). Since it is only possible to introduce the strain rate intensity factor for singular velocity fields, it is obvious that standard finite element codes cannot be used to calculate it. The currently available distributions of the strain rate intensity factor have been found from closed form solutions or with the use of simple approximate solutions (for instance upper bound solutions). Closed form solutions are available for boundary value problems with simple geometry (flow through infinite rough channels, compression of infinite layers between rough plates and so on) and, therefore, are mostly of academic interest. Simple approximate solutions can predict general tendencies in the distribution of the strain rate intensity factor but cannot predict its distribution with a sufficient accuracy for industrial applications. For, the strain rate intensity factor reflects a very local effect inherent in the velocity field whereas simple approximate methods, such as the upper bound method, estimate global parameters, such as the limit load. The purpose of the present research is to propose a special numerical technique for calculating the strain rate intensity factor in the case of plane strain deformation of rigid perfectly plastic materials and to verify it by means of comparison with an analytical solution. The technique is based on the method of Riemann.

Author(s):  
Sergei Alexandrov

The strain rate intensity factor in the theory of rigid perfectly plastic isotropic materials is the coefficient of the principal singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. This coefficient can be used to predict the evolution of material properties in a narrow layer in the vicinity of surfaces where the friction stress is high. Usually, conventional evolution equations are not compatible with the plasticity equations near maximum friction surfaces. It is therefore of interest to extend the theories based on the strain rate intensity factor to more general models than the rigid perfectly plastic isotropic solids. The present paper deals with plane strain deformation of rigid plastic anisotropic material. It is shown by means of a simple analytic solution that the velocity field is singular in the vicinity of maximum friction surfaces. Thus the strain rate intensity factor can be introduced for such materials. An effect of plastic anisotropy on its value is demonstrated. In addition, it is shown that rigid plastic solutions for anisotropic materials can exhibit various types of singularity in the vicinity of maximum friction surfaces, in contrast to isotropic materials where one type only is possible. Nevertheless, in most cases the type of singularity is same for isotropic and anisotropic materials.


2003 ◽  
Vol 48 (3) ◽  
pp. 131-133 ◽  
Author(s):  
S. E. Aleksandrov ◽  
R. V. Goldshtein ◽  
E. A. Lyamina

2014 ◽  
Vol 626 ◽  
pp. 240-245
Author(s):  
Sergei Alexandrov ◽  
Elena Lyamina ◽  
Hguyen Minh Tuan ◽  
Natalia Kalenova

Solutions for many rigid/plastic models are singular in the vicinity of maximum friction surfaces. In particular, the magnitude of the equivalent strain rate near such surfaces is controlled by the strain rate intensity factor. This factor is the coefficient of the leading singular term is a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since the equivalent strain rate has a great effect of material properties, it is of important to reveal the dependence of the strain rate intensity factor on parameters characterizing material models. In the present paper, quite a general model of anisotropic plasticity under plane strain conditions is adopted. Then, using an analytic solution for instantaneous compression of a layer of plastic material between two parallel plates the effect of the shape of the yield locus on the asymptotic behavior of the equivalent strain rate in the vicinity of the friction surface is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document