yield criterion
Recently Published Documents


TOTAL DOCUMENTS

1037
(FIVE YEARS 182)

H-INDEX

46
(FIVE YEARS 5)

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 657
Author(s):  
Hrvoje Smoljanović ◽  
Ivan Balić ◽  
Ante Munjiza ◽  
Viktor Hristovski

This paper presents a computationally efficient numerical model for the analysis of thin shells based on rotation-free triangular finite elements. The geometry of the structure in the vicinity of the observed triangular element is approximated through a controlled domain consisting of nodes of the observed finite element and nodes of three adjacent finite elements between which a second-order spatial polynomial is defined. The model considers large displacements, large rotations, small strains, and material and geometrical nonlinearity. Material nonlinearity is implemented by considering the von Mises yield criterion and the Levi-Mises flow rule. The model uses an explicit time integration scheme to integrate motion equations but an implicit radial returning algorithm to compute the plastic strain at the end of each time step. The presented numerical model has been embedded in the program Y based on the finite–discrete element method and tested on simple examples. The advantage of the presented numerical model is displayed through a series of analyses where the obtained results are compared with other results presented in the literature.


Author(s):  
Xiao-Gang Wang ◽  
Xin-Chao Lin

In this paper, an optimized solution method is proposed for the 3D stability analysis of rock slopes subject to toppling failure based on their geometric and mechanical properties. It was verified by a 3D block system that focused on the geometric properties of toppling slopes as a research object, considering the force and its action point on the interface of the block system as unknown variables, as well as introducing the definition of a safety factor considering both tension and shear strength reduction. The proposed method implied setting constraints, such as the balance equation corresponding to block force and moment, as well as non-violation of the yield criterion, considering the minimum value of the safety factor as the objective function. It was applied to the analysis of two typical 3D models simulating toppling failure on slopes. The example of a 3D spherical toppling slope was reconstructed and corroborated by calculations. The experimental results demonstrated that the proposed method could appropriately reflect the mechanical properties and stability behavior of a 3D toppling slope, thereby facilitating the analysis of the stability of 3D toppling rock slope model.


2021 ◽  
Vol 15 (12) ◽  
pp. 5623-5638
Author(s):  
Mathieu Plante ◽  
L. Bruno Tremblay

Abstract. The Maxwell elasto-brittle (MEB) rheology uses a damage parameterization to represent the brittle fracture of sea ice without involving plastic laws to constrain the sea ice deformations. The conventional MEB damage parameterization is based on a correction of super-critical stresses that binds the simulated stress to the yield criterion but leads to a growth of errors in the stress field. A generalized damage parameterization is developed to reduce this error growth and to investigate the influence of the super-critical stress correction scheme on the simulated sea ice fractures, deformations and orientation of linear kinematic features (LKFs). A decohesive stress tensor is used to correct the super-critical stresses towards different points on the yield curve. The sensitivity of the simulated sea ice fractures and deformations to the decohesive stress tensor is investigated in uniaxial compression experiments. Results show that the decohesive stress tensor influences the growth of residual errors associated with the correction of super-critical stresses, the orientation of the lines of fracture and the short-term deformation associated with the damage, but it does not influence the long-term post-fracture sea ice deformations. We show that when ice fractures, divergence first occurs while the elastic response is dominant, and convergence develops post-fracture in the long term when the viscous response dominates – contrary to laboratory experiments of granular flow and satellite imagery in the Arctic. The post-fracture deformations are shown to be dissociated from the fracture process itself, an important difference with classical viscous plastic (VP) models in which large deformations are governed by associative plastic laws. Using the generalized damage parameterization together with a stress correction path normal to the yield curve reduces the growth of errors sufficiently for the production of longer-term simulations, with the added benefit of bringing the simulated LKF intersection half-angles closer to observations (from 40–50 to 35–45∘, compared to 15–25∘ in observations).


2021 ◽  
pp. 1-13
Author(s):  
Xiaojun Ke ◽  
Weishu Fu ◽  
Zongping Chen

It is well known that the mechanical properties of a material are related to lateral confinement. In this paper, 60 cylindrical high-performance concrete (HPC) specimens with different concrete strength grades were cast and subjected to a conventional triaxial experiment to study the mechanical properties of the material. The experimental results indicated that the specimens exhibited longitudinal splitting failure patterns under uniaxial compression and inclined plane shear failure patterns under triaxial compression. The stress–strain curves were divided into three stages: an elastic rising stage, a plastic rising stage and a softening descending stage. The application of lateral confining pressure effectively increased the triaxial compressive strength. As the concrete strength increased, the descending stage of the stress–strain curves became steeper, indicating an increase in brittleness. Based on the experimental results, the failure criterion of the HPC was analysed using the Drucker–Prager yield criterion and Kotsovos failure theory. The parameters of the Drucker–Prager yield criterion were determined, and the applicable range of the Kotsovos failure theory was also obtained.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2161
Author(s):  
Lihui Lang ◽  
Sergei Alexandrov ◽  
Marina Rynkovskaya

This paper presents a semi-analytic rigid/plastic solution for the expansion/contraction of a hollow cylinder at large strains. The constitutive equations comprise the yield criterion and its associated flow rule. The yield criterion is pressure-independent. The yield stress depends on the equivalent strain rate and the equivalent strain. No restriction is imposed on this dependence. The solution is facilitated using the equivalent strain rate as an independent variable instead of the polar radius. As a result, it reduces to ordinary integrals. In the course of deriving the solution above, the transformation between Eulerian and Lagrangian coordinates is used. A numerical example illustrates the solution for a material model available in the literature. A practical aspect of the solution is that it readily applies to the preliminary design of tube hydroforming processes.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Chuan-Yi Sui ◽  
Yu-Sheng Shen ◽  
Yu-Min Wen ◽  
Bo Gao

To solve the classical problem that the Mohr–Coulomb yield criterion overestimates the tensile properties of geotechnical materials, a modified Mohr–Coulomb yield criterion that includes both maximum tensile stress theory and smooth processing was established herein. The modified Mohr–Coulomb constitutive model is developed using the user-defined material subroutine (UMAT) available in finite element software ABAQUS, and the modified Mohr–Coulomb yield criterion is applied to construct a numerical simulation of a shaking table model test. Compared with the measured data from the shaking table test, the accuracies of the classical Mohr–Coulomb yield criterion and the modified Mohr–Coulomb yield criterion are assessed. Compared to the shaking table test, the classical Mohr–Coulomb model has a relatively large average error (−6.98% in peak acceleration values, −8.47% in displacement values, −23.93% in axial forces), while the modified Mohr–Coulomb model has a smaller average error (+2.71% in peak accelerations value, +3.19% in displacements value, +7.56% in axial forces). The results of numerical simulation using the modified Mohr–Coulomb yield criterion are closer to the measured data.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1411
Author(s):  
Dejan Movrin ◽  
Mladomir Milutinovic ◽  
Marko Vilotic ◽  
Sergei Alexandrov ◽  
Lihui Lang

This paper aims to develop a method for determining the workability diagram by varying frictional conditions in the cylinder upsetting test. The method is based on a known theoretical relationship between the average stress triaxiality ratio and in-surface strains if the initiation of fracture occurs at a traction-free surface. This relationship is valid for any rigid/plastic strain hardening material obeying the Mises-type yield criterion and its associated flow rule, which shows the wide applicability of the method. The experimental input to the method is the strain path at the site of fracture initiation. Neither experimental nor numerical determination of stress components is required at this site, though the general ductile fracture criterion involves the linear and quadratic invariants of the stress tensor. The friction law’s formulation is neither required, though the friction stress is the agent for varying the state of stress and strain at the site of ductile fracture initiation. The upsetting tests are carried out on normalized medium-carbon steel C45E, for which the workability diagram is available from the literature. Comparison of the latter and the diagram found using the new method shows that the new method is reliable for determining a certain portion of the workability diagram.


Author(s):  
Yufeng Zhang ◽  
Meiying Zhao ◽  
Li Xu ◽  
Hongshuang Di ◽  
Xiaojuan Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document