pressure dependency
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Gérard Ancellet ◽  
Sophie Godin-Beekmann ◽  
Herman G. J. Smit ◽  
Ryan M. Stauffer ◽  
Roeland Van Malderen ◽  
...  

Abstract. The Observatoire de Haute Provence (OHP) weekly Electrochemical Concentration Cell (ECC) ozonesonde data have been homogenized for the time period 1991–2020 according to the recommendations of the Ozonesonde Data Quality Assessment (O3S-DQA) panel. The assessment of the ECC homogenization benefit has been carried out using comparisons with ground based instruments also measuring ozone at the same station (lidar, surface measurements) and with collocated satellite observations of the O3 vertical profile by Microwave Limb Sounder (MLS). The major differences between uncorrected and homogenized ECC are related to a change of ozonesonde type in 1997, removal of the pressure dependency of the ECC background current and correction of internal ozonesonde temperature. The 3–4 ppbv positive bias between ECC and lidar in the troposphere is corrected with the homogenization. The ECC 30-years trends of the seasonally adjusted ozone concentrations are also significantly improved both in the troposphere and the stratosphere when the ECC concentrations are homogenized, as shown by the ECC/lidar or ECC/surface ozone trend comparisons. A −0.29 % per year negative trend of the normalization factor (NT) calculated using independent measurements of the total ozone column (TOC) at OHP disappears after homogenization of the ECC. There is however a remaining −5 % negative bias in the TOC which is likely related to an underestimate of the ECC concentrations in the stratosphere above 50 hPa as shown by direct comparison with the OHP lidar and MLS. The reason for this bias is still unclear, but a possible explanation might be related to freezing or evaporation of the sonde solution in the stratosphere. Both the comparisons with lidar and satellite observations suggest that homogenization increases the negative bias of the ECC up to 10 % above 28 km.


2021 ◽  
Vol 9 (12) ◽  
pp. 236-243
Author(s):  
Andrin Kerpaci ◽  
◽  
Ilir Abdullahu ◽  

The condition of the water supply and the actual functioning of the distribution network in Durres area are inadequate to sustain demand at an acceptable level of service for all the billing zones.The distribution network of Durres city is fed at one point (Xhafzotaj junction) for 300-350 l/s with an elevation of about 50 m asl. The planned new transmission line has a diameter of 700 mm and will bring extra 630 l/s.The water distribution systems are one of the vital urban infrastructures and their operationwith a high level of service are of high importance.Many phenomena in water supply systems such as leakage, breakage of pipes etc. are afunction of pressure. When pressure dependency of demand is considered in the hydraulicanalysis, the results thereof shall be consistent with reality.This article presents the new design methodology for a good optimization of the distribution network. The distribution network has been reconstructed as a ring network. It is planned to build 6 DMAas (District Metered Area) to control the flow, pressure and consumption in DMA to build the Water Balance.


Friction ◽  
2021 ◽  
Author(s):  
Xiao Yang ◽  
Yiran Hu ◽  
Lemeng Zhang ◽  
Yang Zheng ◽  
Denis J. Politis ◽  
...  

AbstractThe galling process remains one of the least understood phenomena in metal forming. The transfer of material from a work-piece onto the tool surface can cause an evolutionary increase in friction coefficient (COF) and thus the use of a constant COF in finite element (FE) simulations leads to progressively inaccurate results. For an aluminium work-piece, material transfer, which has history and pressure dependency, is determined by a dynamic balance between the generation and ejection of wear particles acting as a ‘third body’ abrasive element at the contact interface. To address this dynamic interactive phenomenon, pin-on-disc tests between AA6082 and G3500 were performed under step load change conditions. The COF evolutions, morphologies of the transfer layer and its cross-section were studied. It has been found that contact load change will disequilibrate and rebuild the dynamic balance and high load will increase the generation and ejection rate of third body and vice versa. Moreover, based on the experimental results, an interactive model was developed and presented to simulate the dynamic formation process of the aluminium third body layer under load change conditions, enabling multi-cycle simulations to model the galling distribution and friction variation.


2021 ◽  
Author(s):  
Eldert Fokker ◽  
Elmer Ruigrok ◽  
Rhys Hawkins ◽  
Jeannot Trampert

<p>Previous studies examining the relationship between the groundwater table and seismic velocities have provided contradictory results, sometimes reporting positive and sometimes negative correlations between seismic velocity and groundwater table changes. Here we introduce a physics-based model relating fluctuation in the groundwater table and the pore pressure to seismic velocity variation through change in effective stress. This model can be used to explain the contradictory results of previous studies and justifies the use of seismic velocity variation for monitoring of the pore pressure and the groundwater table. It further results in a new field method to measure the pressure dependency of the shear modulus. Using data acquired in Groningen, the Netherlands, we demonstrate that measurements of seismic velocity variation can be used to monitor the pore pressure.</p>


2020 ◽  
Vol MA2020-02 (36) ◽  
pp. 2337-2337
Author(s):  
Björn Marcel Stühmeier ◽  
Markus Ruben Pietsch ◽  
Jan Nicolas Schwämmlein ◽  
Hubert A. Gasteiger

Sign in / Sign up

Export Citation Format

Share Document