An Oil Stiction Model for Flat Armature Solenoid Switching Valves

Author(s):  
Rudolf Scheidl ◽  
Christoph Gradl

Oil stiction forces significantly influence the performance of fast switching valves. These forces stem from the significant lowering of the pressures between two oil filled plates relative to the surrounding pressure when the plates are quickly separated. If the pressure in the gap stays above the vapor pressure the stiction force can be derived from a solution of the Reynolds equation. However, for very fast motions — as occur in fast switching valves with a flat armature solenoid — cavitation is most likely to occur. The cavitation zone starts in central parts of the gap and extends as long as the gap volume increase cannot be fully compensated by the flow in the gap. Cavitation reduces the stiction force significantly. In many valves this stiction force reduction is decisive for a proper functioning of the valve. An important measure for stiction force control are flushing channels, in particular flushing bores. In this paper analytical models and Finite Volume method models are used to study the stiction force problems with and without cavitation and design measures for their mastering.

2018 ◽  
Vol 40 (1) ◽  
pp. 405-421 ◽  
Author(s):  
N Chatterjee ◽  
U S Fjordholm

Abstract We derive and study a Lax–Friedrichs-type finite volume method for a large class of nonlocal continuity equations in multiple dimensions. We prove that the method converges weakly to the measure-valued solution and converges strongly if the initial data is of bounded variation. Several numerical examples for the kinetic Kuramoto equation are provided, demonstrating that the method works well for both regular and singular data.


Author(s):  
T Thomas ◽  
C Pfrommer ◽  
R Pakmor

Abstract We present a new numerical algorithm to solve the recently derived equations of two-moment cosmic ray hydrodynamics (CRHD). The algorithm is implemented as a module in the moving mesh Arepo code. Therein, the anisotropic transport of cosmic rays (CRs) along magnetic field lines is discretised using a path-conservative finite volume method on the unstructured time-dependent Voronoi mesh of Arepo. The interaction of CRs and gyroresonant Alfvén waves is described by short-timescale source terms in the CRHD equations. We employ a custom-made semi-implicit adaptive time stepping source term integrator to accurately integrate this interaction on the small light-crossing time of the anisotropic transport step. Both the transport and the source term integration step are separated from the evolution of the magneto-hydrodynamical equations using an operator split approach. The new algorithm is tested with a variety of test problems, including shock tubes, a perpendicular magnetised discontinuity, the hydrodynamic response to a CR overpressure, CR acceleration of a warm cloud, and a CR blast wave, which demonstrate that the coupling between CR and magneto-hydrodynamics is robust and accurate. We demonstrate the numerical convergence of the presented scheme using new linear and non-linear analytic solutions.


Sign in / Sign up

Export Citation Format

Share Document