A Motion Observer With On-Line Parameter Estimation for Moving-Coil Based Digital Valves in Digital Displacement Machines

Author(s):  
Christian Noergaard ◽  
Michael M. Bech ◽  
Daniel B. Roemer

In this paper, a method is developed to estimate the parameters and motion of a moving coil actuator in the digital valves of Digital Displacement machines. The parameter estimation is carried out using three simple distinctive schemes from which certain electrical and magnetic parameters may be estimated. The parameter estimation method uses simple adaptation laws to update the moving coil actuator parameters used to estimate the valve plunger motion in an observer. The observer estimates the velocity using the back electro-motive force (back-emf) induced when moving the coil based on current and voltage measurements, but without any mechanical sensors. The valve movement of digital valves is confined by mechanical end-stops enabling estimating the valve position through integration of the estimated velocity relatively accurate. The observer depends on precise knowledge of the electrical dynamics to accurately estimate the valve motion. When the parameters are converged through adaptation the observer proves to be capable of tracking the valve motion relatively accurate, however some deviation occur at the mechanical end-stops of the valve. The parameter estimation method and the observer is implemented and tested off-line when using experimental data obtained from a newly developed digi-valve prototype which uses a moving coil actuator as the force producing element.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jian-wei Yang ◽  
Man-feng Dou ◽  
Zhi-yong Dai

Taking advantage of the high reliability, multiphase permanent magnet synchronous motors (PMSMs), such as five-phase PMSM and six-phase PMSM, are widely used in fault-tolerant control applications. And one of the important fault-tolerant control problems is fault diagnosis. In most existing literatures, the fault diagnosis problem focuses on the three-phase PMSM. In this paper, compared to the most existing fault diagnosis approaches, a fault diagnosis method for Interturn short circuit (ITSC) fault of five-phase PMSM based on the trust region algorithm is presented. This paper has two contributions. (1) Analyzing the physical parameters of the motor, such as resistances and inductances, a novel mathematic model for ITSC fault of five-phase PMSM is established. (2) Introducing an object function related to the Interturn short circuit ratio, the fault parameters identification problem is reformulated as the extreme seeking problem. A trust region algorithm based parameter estimation method is proposed for tracking the actual Interturn short circuit ratio. The simulation and experimental results have validated the effectiveness of the proposed parameter estimation method.


Sign in / Sign up

Export Citation Format

Share Document