Parameterization of High Solar Share Gas Turbine Systems

Author(s):  
Stephan Heide ◽  
Christian Felsmann ◽  
Uwe Gampe ◽  
Sven Boje ◽  
Bernd Gericke ◽  
...  

Existing solar thermal power plants are based on steam turbine cycles. While their process temperature is limited, solar gas turbine (GT) systems provide the opportunity to utilize solar heat at a much higher temperature. Therefore there is potential to improve the efficiency of future solar thermal power plants. Solar based heat input to substitute fuel requires specific GT features. Currently the portfolio of available GTs with these features is restricted. Only small capacity research plants are in service or in planning. Process layout and technology studies for high solar share GT systems have been carried out and have already been reported by the authors. While these investigations are based on a commercial 10MW class GT, this paper addresses the parameterization of high solar share GT systems and is not restricted to any type of commercial GT. Three configurations of solar hybrid GT cycles are analyzed. Besides recuperated and simple GT with bottoming Organic Rankine Cycle (ORC), a conventional combined cycle is considered. The study addresses the GT parameterization. Therefore parametric process models are used for simulation. Maximum electrical efficiency and associated optimum compressor pressure ratio πC are derived at design conditions. The pressure losses of the additional solar components of solar hybrid GTs have a different adversely effect on the investigated systems. Further aspects like high ambient temperature, availability of water and influence of compressor pressure level on component design are discussed as well. The present study is part of the R&D project Hybrid High Solar Share Gas Turbine Systems (HYGATE) which is funded by the German Ministry for the Environment, Nature and Nuclear Safety and the Ministry of Economics and Technology.

Author(s):  
Christian Felsmann ◽  
Uwe Gampe ◽  
Stephan Heide ◽  
Manfred Freimark

Solar gas turbine (GT) systems provide the opportunity to utilize solar heat at a much higher temperature than solar thermal power plants based on steam turbine cycles. Therefore, GT technology has the potential to improve the efficiency of future solar thermal power plants. Nevertheless, to achieve mature technology for commercial application, further development steps are required. Knowledge of the operational behavior of the solar GT system is the basis for the development of the systems control architecture and safety concept. The paper addresses dynamic simulation of high solar share GT systems, which are characterized by primary input of solar heat to the GT. To analyze the dynamic operating behavior, a model with parallel arrangement of the combustion chamber and the solar receiver was set up. By using the heaviside step function, the system dynamics were translated into transfer functions which are used to develop controllers for the particular system configuration. Two operating conditions were simulated to test the controller performance. The first case is the slow increase and decrease of solar heat flow, as part of a regular operation. The second case is an assumed rapid change of solar heat flow, which can be caused by clouds. For all cases, time plots of critical system parameters are shown and analyzed. The simulation results show much more complex system behavior compared to conventional GT systems. This is due to the additional solar heat source, large volumes, and stored thermal energy as well as the time delay of energy transportation caused by the piping system.


Author(s):  
Christian Felsmann ◽  
Stephan Heide ◽  
Uwe Gampe ◽  
Manfred Freimark

Solar gas turbine (GT) systems provide the opportunity to utilize solar heat at a much higher temperature than solar thermal power plants based on steam turbine cycles. Therefore gas turbine technology has the potential to improve the efficiency of future solar thermal power plants. Nevertheless, to achieve mature technology for commercial application, further development steps are required. Knowledge of the operational behavior of the solar GT system is the basis for the development of the systems control architecture and safety concept. The paper addresses dynamic simulation of high solar share GT systems, which are characterized by primary input of solar heat to the gas turbine. To analyze the dynamic operating behavior, a model with parallel arrangement of the combustion chamber and the solar receiver was set up. By using the Heaviside step function, the system dynamics were translated into transfer functions which are used to develop controllers for the particular system configuration. Two operating conditions were simulated to test the controller performance. The first case is the slow increase and decrease of solar heat flow, as part of a regular operation. The second case is an assumed rapid change of solar heat flow, which can be caused by clouds. For all cases time plots of critical system parameters are shown and analyzed. The simulation results show much more complex system behavior compared to conventional GT systems. This is due to the additional solar heat source, large volumes and stored thermal energy as well as the time delay of energy transportation caused by the piping system.


Solar Energy ◽  
2011 ◽  
Vol 85 (4) ◽  
pp. 653-659 ◽  
Author(s):  
Michael Wittmann ◽  
Markus Eck ◽  
Robert Pitz-Paal ◽  
Hans Müller-Steinhagen

Sign in / Sign up

Export Citation Format

Share Document