Full-Coverage Film Cooling: Heat Transfer Coefficients and Film Effectiveness for a Sparse Hole Array at Different Blowing Ratios and Contraction Ratios

Author(s):  
Phillip Ligrani ◽  
Matt Goodro ◽  
Michael D. Fox ◽  
Hee-Koo Moon

The present experimental investigation considers a full coverage film cooling arrangement with differrent streamwise static pressure gradients. The film cooling holes in adjacent streamwise rows are staggered with respect to each other, with sharp edges, and streamwise inclination angles of 20 degrees with respect to the liner surface. Data are provided for turbulent film cooling, contraction ratios of 1 and 4, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers of 12,000, freestream temperatures from 75°C to 115°C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Non-dimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 18, and 5, respectively. Data illustrating the effects of contraction ratio, blowing ratio, and streamwise location on local, line-averaged and spatially-averaged adiabatic film effectiveness data, and on local, line-averaged and spatially-averaged heat transfer coefficient data are presented. Varying blowing ratio values are utilized along the length of the contraction passage, which contains the cooling hole arrangement, when contraction ratio is 4. Dependence on blowing ratio indicates important influences of coolant concentration and distribution. For example, line-averaged and spatially-averaged adiabatic effectiveness data show vastly different changes with blowing ratio BR for the configurations with contraction ratios of 1 and 4. These changes from acceleration are thus mostly due to different blowing ratio distributions along the test section. In particular, much larger effectiveness alterations are present as BR changes from 2.0 to 10.0, when significant acceleration is present and Cr = 4 (in comparison with the Cr = 1 data). When BR = 10.0, much smaller changes due to different contract ratios are present. This is because coolant distributions along the test surfaces are so abundant that magnitudes of streamwise acceleration (and different streamwise variations of blowing ratio) have little effect on near-wall film concentration distributions, or on variations of film cooling effectiveness.

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Phil Ligrani ◽  
Matt Goodro ◽  
Michael D. Fox ◽  
Hee-Koo Moon

The present experimental investigation considers a full coverage film cooling arrangement with different streamwise static pressure gradients. The film cooling holes in adjacent streamwise rows are staggered with respect to each other, with sharp edges and streamwise inclination angles of 20 deg with respect to the liner surface. Data are provided for turbulent film cooling, contraction ratios of 1 and 4, blowing ratios (BRs) (at the test section entrance) of 2.0, 5.0, and 10.0, a coolant Reynolds number of 12,000, freestream temperatures from 75 °C to 115 °C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Nondimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 18 and 5, respectively. Data illustrating the effects of contraction ratio, BR, and streamwise location on local, line-averaged, and spatially averaged adiabatic film effectiveness data; and on local, line-averaged and spatially averaged heat transfer coefficient data are presented. Varying BR values are present along the length of the contraction passage, which contains the cooling hole arrangement, when contraction ratio is 4. Dependence on BR indicates important influences of coolant concentration and distribution. For example, line-averaged and spatially averaged adiabatic effectiveness data show vastly different changes with BR for the configurations with contraction ratios of 1 and 4. In addition, much larger effectiveness alterations are present as BR changes from 2.0 to 10.0, when significant acceleration is present and Cr = 4 (in comparison with the Cr = 1 data).


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Nathan Rogers ◽  
Zhong Ren ◽  
Warren Buzzard ◽  
Brian Sweeney ◽  
Nathan Tinker ◽  
...  

Experimental results are presented for a double wall cooling arrangement which simulates a portion of a combustor liner of a gas turbine engine. The results are collected using a new experimental facility designed to test full-coverage film cooling and impingement cooling effectiveness using either cross flow, impingement, or a combination of both to supply the film cooling flow. The present experiment primarily deals with cross flow supplied full-coverage film cooling for a sparse film cooling hole array that has not been previously tested. Data are provided for turbulent film cooling, contraction ratio of 1, blowing ratios ranging from 2.7 to 7.5, coolant Reynolds numbers based on film cooling hole diameter of about 5000–20,000, and mainstream temperature step during transient tests of 14 °C. The film cooling hole array consists of a film cooling hole diameter of 6.4 mm with nondimensional streamwise (X/de) and spanwise (Y/de) film cooling hole spacing of 15 and 4, respectively. The film cooling holes are streamwise inclined at an angle of 25 deg with respect to the test plate surface and have adjacent streamwise rows staggered with respect to each other. Data illustrating the effects of blowing ratio on adiabatic film cooling effectiveness and heat transfer coefficient are presented. For the arrangement and conditions considered, heat transfer coefficients generally increase with streamwise development and increase with increasing blowing ratio. The adiabatic film cooling effectiveness is determined from measurements of adiabatic wall temperature, coolant stagnation temperature, and mainstream recovery temperature. The adiabatic wall temperature and the adiabatic film cooling effectiveness generally decrease and increase, respectively, with streamwise position, and generally decrease and increase, respectively, as blowing ratio becomes larger.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Phil Ligrani ◽  
Matt Goodro ◽  
Mike Fox ◽  
Hee-Koo Moon

Experimental results are presented for a full-coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient. The test surface utilizes varying blowing ratio (BR) along the length of the contraction passage which contains the cooling hole arrangement. For the different experimental conditions examined, film cooling holes are sharp-edged and streamwise inclined either at 20 deg or 30 deg with respect to the liner surface. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1, 3, 4, and 5, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc of 10,000–12,000, freestream temperatures from 75 °C to 115 °C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Nondimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 6, and 5, respectively. When the streamwise hole inclination angle is 20 deg spatially averaged and line-averaged adiabatic effectiveness values at each x/D location are about the same as the contraction ratio varies between 1, 3, and 4, with slightly higher values at each x/D location when the contraction ratio Cr is 5. For each contraction ratio, there is a slight increase in effectiveness when the blowing ratio is increased from 2.0 to 5.0 but there is no further substantial improvement when the blowing ratio is increased to 10.0. Overall, line-averaged and spatially averaged-adiabatic film effectiveness data, and spatially averaged heat transfer coefficient data are described as they are affected by contraction ratio, blowing ratio, hole angle α, and streamwise location x/D. For example, when α = 20 deg, the detrimental effects of mainstream acceleration are apparent since heat transfer coefficients for contraction ratios Cr of 3 and 5 are often higher than values for Cr = 1, especially for x/D > 100.


Author(s):  
Nathan Rogers ◽  
Zhong Ren ◽  
Warren Buzzard ◽  
Brian Sweeney ◽  
Nathan Tinker ◽  
...  

Experimental results are presented for a double wall cooling arrangement which simulates a portion of a combustor liner of a gas turbine engine. The results are collected using a new experimental facility designed to test full coverage film cooling and impingement cooling effectiveness using either cross flow, impingement, or a combination of both to supply the film cooling flow. The present experiment primarily deals with cross flow supplied full coverage film cooling for a sparse film cooling hole array that has not been previously tested. Data are provided for turbulent film cooling, contraction ratio of 1, blowing ratios ranging from 2.7 to 7.5, coolant Reynolds numbers based on film cooling hole diameter of about 5,000–20,000, and mainstream temperature step during transient tests of 14 °C. The film cooling hole array consists of a film cooling hole diameter of 6.4 mm with non-dimensional streamwise (X/de) and spanwise (Y/de) film cooling hole spacing of 15 and 4, respectively. The film cooling holes are streamwise inclined at an angle of 25 degrees with respect to the test plate surface and have adjacent streamwise rows staggered with respect to each other. Data illustrating the effects of blowing ratio on adiabatic film cooling effectiveness and heat transfer coefficient are presented. For the arrangement and conditions considered, heat transfer coefficients generally increase with streamwise development, and increase with increasing blowing ratio. The adiabatic film cooling effectiveness is determined from measurements of adiabatic wall temperature, coolant stagnation temperature, and mainstream recovery temperature. The adiabatic wall temperature and adiabatic film cooling effectiveness generally decrease and increase, respectively, with streamwise position, and generally decrease and increase, respectively, as blowing ratio becomes larger.


Author(s):  
Matt Goodro ◽  
Phil Ligrani ◽  
Mike Fox ◽  
Hee-Koo Moon

Experimental results are presented for a full coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient. The test surface utilizes varying blowing ratio along the length of the contraction passage which contains the cooling hole arrangement. For the different experimental conditions examined, film cooling holes are sharp-edged and streamwise inclined either at 20° or 30° with respect to the liner surface. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1, 3, 4, and 5, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc of 10,000 to 12,000, freestream temperatures from 75°C to 115°C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Non-dimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 6, and 5, respectively. When the streamwise hole inclination angle is 20°, spatially-averaged and line-averaged adiabatic effectiveness values at each x/D location are about the same as the contraction ratio varies between 1, 3, and 4, with slightly higher values at each x/D location when the contraction ratio Cr is 5. For each contraction ratio, there is a slight increase in effectiveness when the blowing ratio is increased from 2.0 to 5.0 but there is no further substantial improvement when the blowing ratio is increased to 10.0. Overall, line-averaged and spatially-averaged adiabatic film effectiveness data, and spatially-averaged heat transfer coefficient data are described as they are affected by contraction ratio, blowing ratio, hole angle α, and streamwise location x/D. For example, when α = 20°, the detrimental effects of mainstream acceleration are apparent since heat transfer coefficients for contraction ratios Cr of 3 and 5 are often higher than values for Cr = 1, especially for x/D > 100.


Author(s):  
Matt Goodro ◽  
Phil Ligrani ◽  
Mike Fox ◽  
Hee-Koo Moon

Experimental results are presented for a full coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient and varying blowing ratio along the length of the contraction passage which contains the cooling hole arrangement. Film cooling holes are sharp-edged, streamwise inclined at 20° with respect to the liner surface, and are arranged with a length to diameter ratio of 8.35. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1 and 4, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc from 10,000 to 12,000, freestream temperatures from 75°C to 115°C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Changes to X/D and Y/D, non-dimensional streamwise and spanwise film cooling hole spacings, with Y/D of 3, 5, and 7, and with X/D of 6 and 18, are considered. For all X/D = 6 hole spacings, only a slight increase in effectiveness (local, line-averaged, and spatially-averaged) values are present as the blowing ratio increases from 2.0 to 5.0, with no significant differences when the blowing ratio increases from 5.0 to 10.0. This lack of dependence on blowing ratio indicates a condition where excess coolant is injected into the mainstream flow, a situation not evidenced by data obtained with the X/D = 18 hole spacing arrangement. With this sparse array configuration, local and spatially-averaged effectiveness generally increase continually as the blowing ratio becomes larger. Line-averaged and spatially-averaged heat transfer coefficients are generally higher at each streamwise location, also with larger variations with streamwise development, with the X/D = 6 hole array, compared to the X/D = 18 array.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Phil Ligrani ◽  
Matt Goodro ◽  
Mike Fox ◽  
Hee-Koo Moon

Experimental results are presented for a full coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient and varying blowing ratio along the length of the contraction passage which contains the cooling hole arrangement. Film cooling holes are sharp-edged, streamwise inclined at 20 deg with respect to the liner surface, and are arranged with a length to diameter ratio of 8.35. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1 and 4, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc from 10,000 to 12,000 (for a blowing ratio of 5.0), freestream temperatures from 75 °C to 115 °C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Changes to X/D and Y/D, nondimensional streamwise and spanwise film cooling hole spacings, with Y/D of 3, 5, and 7, and with X/D of 6 and 18, are considered. For all X/D=6 hole spacings, only a slight increase in effectiveness (local, line-averaged, and spatially-averaged) values are present as the blowing ratio increases from 2.0 to 5.0, with no significant differences when the blowing ratio increases from 5.0 to 10.0. This lack of dependence on blowing ratio indicates a condition where excess coolant is injected into the mainstream flow, a situation not evidenced by data obtained with the X/D=18 hole spacing arrangement. With this sparse array configuration, local and spatially-averaged effectiveness generally increase continually as the blowing ratio becomes larger. Line-averaged and spatially-averaged heat transfer coefficients are generally higher at each streamwise location, also with larger variations with streamwise development, with the X/D=6 hole array, compared to the X/D=18 array.


Author(s):  
Chao Zhang ◽  
Jian-Jun Liu ◽  
Zhan Wang ◽  
Bai-Tao An

Based on the one-dimensional heat transfer analysis of film cooled turbine blade, the correlation between overall cooling effectiveness and Biot number was obtained, where Biot number represents the ratio of the solid thermal resistance to the external convective heat transfer resistance. And a new parameter — net film cooling effectiveness was defined to evaluate the film cooling performance in the case of conjugate film cooling. Conjugate heat transfer simulation was carried out by using the commercial CFD package CFX for the typical cylindrical film cooling holes on flat plate. The influences of Biot number under different blowing ratios on laterally-averaged overall film cooling effectiveness, laterally-averaged and area-averaged net film cooling effectiveness were investigated systematically. The results showed that due to the effect of solid heat conduction, laterally averaged overall film cooling effectiveness is higher than adiabatic film cooling effectiveness, and the upstream region of the cooling hole can also be cooled by the coolant. With the decrease of Biot number, both the stream-wise and laterally overall cooling effectiveness are more uniform, and laterally-averaged net film cooling effectiveness is reduced. The trend of laterally-averaged net cooling effectiveness under different blowing ratios is consistent with the adiabatic case, but has lower values. For the engine-like Biot number Bi = 0.36, compared with the low blowing ratio M = 0.5 case, the value of area-averaged net film cooling effectiveness is reduced about 29% and 65% correspondingly under blowing ratio M = 1.0 and M = 1.5.


1980 ◽  
Vol 102 (4) ◽  
pp. 1006-1012 ◽  
Author(s):  
M. E. Crawford ◽  
W. M. Kays ◽  
R. J. Moffat

Experimental research into heat transfer from full-coverage film-cooled surfaces with three injection geometries was described in Part I. This part has two objectives. The first is to present a simple numerical procedure for simulation of heat transfer with full-coverage film cooling. The second objective is to present some of the Stanton number data that was used in Part I of the paper. The data chosen for presentation are the low-Reynolds number, heated-starting-length data for the three injection geometries with five-diameter hole spacing. Sample data sets with high blowing ratio and with ten-diameter hole spacing are also presented. The numerical procedure has been successfully applied to the Stanton number data sets.


2003 ◽  
Vol 125 (4) ◽  
pp. 648-657 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


Sign in / Sign up

Export Citation Format

Share Document