Effects of Double Wall Cooling Configuration and Conditions on Performance of Full-Coverage Effusion Cooling

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Nathan Rogers ◽  
Zhong Ren ◽  
Warren Buzzard ◽  
Brian Sweeney ◽  
Nathan Tinker ◽  
...  

Experimental results are presented for a double wall cooling arrangement which simulates a portion of a combustor liner of a gas turbine engine. The results are collected using a new experimental facility designed to test full-coverage film cooling and impingement cooling effectiveness using either cross flow, impingement, or a combination of both to supply the film cooling flow. The present experiment primarily deals with cross flow supplied full-coverage film cooling for a sparse film cooling hole array that has not been previously tested. Data are provided for turbulent film cooling, contraction ratio of 1, blowing ratios ranging from 2.7 to 7.5, coolant Reynolds numbers based on film cooling hole diameter of about 5000–20,000, and mainstream temperature step during transient tests of 14 °C. The film cooling hole array consists of a film cooling hole diameter of 6.4 mm with nondimensional streamwise (X/de) and spanwise (Y/de) film cooling hole spacing of 15 and 4, respectively. The film cooling holes are streamwise inclined at an angle of 25 deg with respect to the test plate surface and have adjacent streamwise rows staggered with respect to each other. Data illustrating the effects of blowing ratio on adiabatic film cooling effectiveness and heat transfer coefficient are presented. For the arrangement and conditions considered, heat transfer coefficients generally increase with streamwise development and increase with increasing blowing ratio. The adiabatic film cooling effectiveness is determined from measurements of adiabatic wall temperature, coolant stagnation temperature, and mainstream recovery temperature. The adiabatic wall temperature and the adiabatic film cooling effectiveness generally decrease and increase, respectively, with streamwise position, and generally decrease and increase, respectively, as blowing ratio becomes larger.

Author(s):  
Nathan Rogers ◽  
Zhong Ren ◽  
Warren Buzzard ◽  
Brian Sweeney ◽  
Nathan Tinker ◽  
...  

Experimental results are presented for a double wall cooling arrangement which simulates a portion of a combustor liner of a gas turbine engine. The results are collected using a new experimental facility designed to test full coverage film cooling and impingement cooling effectiveness using either cross flow, impingement, or a combination of both to supply the film cooling flow. The present experiment primarily deals with cross flow supplied full coverage film cooling for a sparse film cooling hole array that has not been previously tested. Data are provided for turbulent film cooling, contraction ratio of 1, blowing ratios ranging from 2.7 to 7.5, coolant Reynolds numbers based on film cooling hole diameter of about 5,000–20,000, and mainstream temperature step during transient tests of 14 °C. The film cooling hole array consists of a film cooling hole diameter of 6.4 mm with non-dimensional streamwise (X/de) and spanwise (Y/de) film cooling hole spacing of 15 and 4, respectively. The film cooling holes are streamwise inclined at an angle of 25 degrees with respect to the test plate surface and have adjacent streamwise rows staggered with respect to each other. Data illustrating the effects of blowing ratio on adiabatic film cooling effectiveness and heat transfer coefficient are presented. For the arrangement and conditions considered, heat transfer coefficients generally increase with streamwise development, and increase with increasing blowing ratio. The adiabatic film cooling effectiveness is determined from measurements of adiabatic wall temperature, coolant stagnation temperature, and mainstream recovery temperature. The adiabatic wall temperature and adiabatic film cooling effectiveness generally decrease and increase, respectively, with streamwise position, and generally decrease and increase, respectively, as blowing ratio becomes larger.


Author(s):  
Phillip Ligrani ◽  
Matt Goodro ◽  
Michael D. Fox ◽  
Hee-Koo Moon

The present experimental investigation considers a full coverage film cooling arrangement with differrent streamwise static pressure gradients. The film cooling holes in adjacent streamwise rows are staggered with respect to each other, with sharp edges, and streamwise inclination angles of 20 degrees with respect to the liner surface. Data are provided for turbulent film cooling, contraction ratios of 1 and 4, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers of 12,000, freestream temperatures from 75°C to 115°C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Non-dimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 18, and 5, respectively. Data illustrating the effects of contraction ratio, blowing ratio, and streamwise location on local, line-averaged and spatially-averaged adiabatic film effectiveness data, and on local, line-averaged and spatially-averaged heat transfer coefficient data are presented. Varying blowing ratio values are utilized along the length of the contraction passage, which contains the cooling hole arrangement, when contraction ratio is 4. Dependence on blowing ratio indicates important influences of coolant concentration and distribution. For example, line-averaged and spatially-averaged adiabatic effectiveness data show vastly different changes with blowing ratio BR for the configurations with contraction ratios of 1 and 4. These changes from acceleration are thus mostly due to different blowing ratio distributions along the test section. In particular, much larger effectiveness alterations are present as BR changes from 2.0 to 10.0, when significant acceleration is present and Cr = 4 (in comparison with the Cr = 1 data). When BR = 10.0, much smaller changes due to different contract ratios are present. This is because coolant distributions along the test surfaces are so abundant that magnitudes of streamwise acceleration (and different streamwise variations of blowing ratio) have little effect on near-wall film concentration distributions, or on variations of film cooling effectiveness.


Author(s):  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

This paper presents detailed measurements of the film-cooling effectiveness for three single, scaled-up film-cooling hole geometries. The hole geometries investigated include a cylindrical hole and two holes with a diffuser shaped exit portion (i.e. a fanshaped and a laidback fanshaped hole). The flow conditions considered are the crossflow Mach number at the hole entrance side (up to 0.6), the crossflow Mach number at the hole exit side (up to 1.2), and the blowing ratio (up to 2). The coolant-to-mainflow temperature ratio is kept constant at 0.54. The measurements are performed by means of an infrared camera system which provides a two-dimensional distribution of the film-cooling effectiveness in the nearfield of the cooling hole down to x/D = 10. As compared to the cylindrical hole, both expanded holes show significantly improved thermal protection of the surface downstream of the ejection location, particularly at high blowing ratios. The laidback fanshaped hole provides a better lateral spreading of the ejected coolant than the fanshaped hole which leads to higher laterally averaged film-cooling effectiveness. Coolant passage crossflow Mach number and orientation strongly affect the flowfield of the jet being ejected from the hole and, therefore, have an important impact on film-cooling performance.


Author(s):  
Sadam Hussain ◽  
Xin Yan

Abstract Film cooling is one of the most critical technologies in modern gas turbine engine to protect the high temperature components from erosion. It allows gas turbines to operate above the thermal limits of blade materials by providing the protective cooling film layer on outer surfaces of blade against hot gases. To get a higher film cooling effect on plain surface, current study proposes a novel strategy with the implementation of hole-pair into ramp. To gain the film cooling effectiveness on the plain surface, RANS equations combined with k-ω turbulence model were solved with the commercial CFD solver ANSYS CFX11.0. In the numerical simulations, the density ratio (DR) is fixed at 1.6, and the film cooling effect on plain surface with different configurations (i.e. with only cooling hole, with only ramp, and with hole-pair in ramp) were numerically investigated at three blowing ratios M = 0.25, 0.5, and 0.75. The results show that the configuration with Hole-Pair in Ramp (HPR) upstream the cooling hole has a positive effect on film cooling enhancement on plain surface, especially along the spanwise direction. Compared with the baseline configuration, i.e. plain surface with cylindrical hole, the laterally-averaged film cooling effectiveness on plain surface with HPR is increased by 18%, while the laterally-averaged film cooling effectiveness on plain surface with only ramp is increased by 8% at M = 0.5. As the blowing ratio M increases from 0.25 to 0.75, the laterally-averaged film cooling effectiveness on plain surface with HPR is kept on increasing. At higher blowing ratio M = 0.75, film cooling effectiveness on plain surface with HPR is about 19% higher than the configuration with only ramp.


Author(s):  
Nirmal Halder ◽  
Arun Saha ◽  
Pradipta Panigrahi

Abstract A simulation study is performed to inspect the influence of delta winglet pair for improving the film cooling effectiveness of gas turbine blade. Incompressible continuity, momentum, energy and two equations - SST model have been used for investigating the nature of flow field, temperature field and turbulent statistics. Reynolds number based on the jet velocity and film cooling hole diameter is 4232. The jet to cross-flow blowing ratio has been varied as 0.5, 1.0 and 1.5. The corresponding Reynolds numbers based on cross-flow velocity and film-hole diameter are equal to 6462, 4229 and 3231 respectively. It is observed that common flow down configuration augments the film cooling effectiveness which attributed to the development of secondary longitudinal vortices. Longitudinal vortices annihilate the counter rotating vortex structures present in the baseline flow. The generation of hairpin vortices and boost of shear layer vortices are modified due to the implementation of Delta winglet pair. The overall turbulence intensity and vorticity get reduced due to the presence of Delta winglet pair. A maximum of 97.46% and a minimum of 61.50% enhancement in film cooling effectiveness is observed at blowing ratio of 1.5 and 0.5 respectively.Wake region of film cooling jet is modified due to Delta winglet pair leading to formation of stagnation region and lower mixing resulting in higher film cooling effectiveness.


Author(s):  
Sang Hyun Oh ◽  
Dong Hyun Lee ◽  
Kyung Min Kim ◽  
Moon Young Kim ◽  
Hyung Hee Cho

An experimental investigation is conducted on the cooling effectiveness of full-coverage film cooled wall with impingement jets. Film cooling plate is made of stainless steel, thus the adiabatic film cooling effectiveness and the cooling effect of impingement jet underneath the film cooling plate are comprised in the cooling effectiveness. Infra-red camera is used to measure the temperature of film cooled surfaces. Experiments are conducted with different film cooling hole angles, such as 35° and 90°. Diameters of both film cooling holes and impinging jet holes are 5 mm. The jet Reynolds number base on the hole diameter (Red) ranges from 3,000 to 5,000 and equivalent blowing ratios (M) varies from 0.3 to 0.5, respectively. The distance between the injection plate and the film cooling plate is 1, 3 and 5 times of the hole diameter. The streamwise and spanwise hole spacing to the hole diameter ratio (p/d) are 3 for both the film cooling hole plate and the impingement jet hole plate. The 35° angled film cooling hole arrangement shows higher film cooling effectiveness than the 90° film cooling hole arrangement. As the blowing ratio increases, the cooling effectiveness is enhanced for both the 35° almost constant regardless of H/d, while H/d = 1 shows a minimum value for the angled film cooling hole.


2021 ◽  
pp. 1-28
Author(s):  
Zhi-Qiang Yu ◽  
Jianjun Liu ◽  
Chen Li ◽  
Baitao An ◽  
Guang-Yao Xu

Abstract This paper focuses on the influences of the discrete hole shape and layout on the blade endwall film cooling effectiveness. The diffusion slot hole was first applied to the blade endwall and compared with the fan-shaped hole. The effect of upstream purge slot injection on the film cooling performance of the discrete hole was also investigated. Experiments were performed in a linear cascade with a exit Reynolds number of 2.64×105. The film cooling effectiveness on the blade endwall were measured by the pressure sensitive paint technique. Results indicate that the diffusion slot hole significantly increases the film cooling effectiveness on the blade endwall compared to the fan-shaped hole, especially at high blowing ratio. The maximum relative increment of the cooling effectiveness is over 40%. The layout with the discrete holes arranged lining up with the tangent direction of the blade profile offset curves exhibits a comparable film cooling effectiveness with the layout with the discrete holes arranged according to the cross-flow direction. The film cooling effectiveness on the pressure surface corner is remarkably enhanced by deflecting the hole orientation angle towards the pressure surface. The combination of purge slot and diffusion slot holes supplies a full coverage film cooling for the entire blade endwall at coolant mass flow ratio of the purge slot of 1.5% and blowing ratio of 2.5. In addition, the slot injection leads to a non-negligible influence on the cooling performance of the discrete holes near the separation line.


Author(s):  
Shubham Agarwal ◽  
Laurent Gicquel ◽  
Florent Duchaine ◽  
Nicolas Odier ◽  
Jérôme Dombard

Abstract Understanding the flow from a cooling hole is very important to be able to properly control film cooling of turbine blades. For this purpose, large eddy simulation (LES) investigation of the flow inside a cylindrical film cooling hole is presented in this paper. Two different geometries, with different hole metering lengths, are investigated at a blowing ratio of 0.5. The main flow structure in the hole are the hairpin vortices that originate from a shear layer formed due to flow separation near the hole entry. The comparison of these hairpin vortices in the two cases with different hole metering length is presented in detail. The results show that in case of the hole with longer length the hairpin vortices dissociate within the hole itself. In such a case a uniform flow is seen at the hole exit. However, when the hole length is significantly decreased, it is shown that these vortices exit the hole and effect the vortex structures outside the hole, thereby accounting for the reduction in film cooling effectiveness. Overall, these results bring forth one other major reason for the reduction in film cooling effectiveness with reduction in hole length, i.e. the exit of in-hole hairpin vortices into the crossflow.


Author(s):  
Lin Ye ◽  
Cun-liang Liu ◽  
Hui-ren Zhu ◽  
Jian-xia Luo ◽  
Ying-ni Zhai

This paper presents an experimental and numerical investigation on the film cooling with different coolant feeding channel structures. Two ribbed cross-flow channels with rib-orientation of 135° and 45° respectively and the plenum coolant channel have been studied and compared to find out the effect of rib orientation on the film cooling performances of cylindrical holes. The film cooling effectiveness and heat transfer coefficient were measured by the transient heat transfer measurement technique with narrow-band thermochromic liquid crystal. Numerical simulations with realizable k-ε turbulence model were also performed to analyze the flow mechanism. The results show that the coolant channel structure has a notable effect on the flow structure of film jet which is the most significant mechanism affecting the film cooling performance. Generally, film cooling cases fed with ribbed cross-flow channels have asymmetric counter-rotating vortex structures and related asymmetric temperature distributions, which make the film cooling effectiveness and the heat transfer coefficient distributions asymmetric to the hole centerline. The discharge coefficient of the 45° rib case is the lowest among the three cases under all the blowing ratios. And the plenum case has higher discharge coefficient than the 135° rib case under low blowing ratio. With the increase of blowing ratio, the discharge coefficient of the 135° rib case gets larger than the plenum case gradually, because the vortex in the upper half region of the coolant channel rotates in the same direction with the film hole inclination direction and makes the jet easy to flow into the film hole in the 135° rib case.


2005 ◽  
Vol 127 (3) ◽  
pp. 635-645 ◽  
Author(s):  
Rongguang Jia ◽  
Bengt Sundén ◽  
Petre Miron ◽  
Bruno Léger

Numerical simulations coupled with laser Doppler velocimetry (LDV) experiments were carried out to investigate a slot jet issued into a cross flow, which is relevant in the film cooling of gas turbine combustors. The film-cooling fluid injection from slots or holes into a cross flow produces highly complicated flow fields. In this paper, the time-averaged Navier-Stokes equations were solved on a collocated body-fitted grid system with the shear stress transport k−ω, V2F k−ϵ, and stress-ω turbulence models. The fluid flow and turbulent Reynolds stress fields were compared to the LDV experiments for three jet angles, namely, 30, 60, and 90 deg, and the jet blowing ratio is ranging from 2 to 9. Good agreement was obtained. Therefore, the present solution procedure was also adopted to calculations of 15 and 40 deg jets. In addition, the temperature fields were computed with a simple eddy diffusivity model to obtain the film-cooling effectiveness, which, in turn, was used for evaluation of the various jet cross-flow arrangements. The results show that a recirculation bubble downstream of the jet exists for jet angles larger than 40 deg, but it vanishes when the angle is <30deg, which is in good accordance with the experiments. The blowing ratio has a large effect on the size of the recirculation bubble and, consequently, on the film cooling effectiveness. In addition, the influence of boundary conditions for the jet and cross flow are also addressed in the paper.


Sign in / Sign up

Export Citation Format

Share Document