Predicting Thermoacoustic Instability in an Industrial Gas Turbine Combustor: Combining a Low Order Network Model With Flame LES

Author(s):  
Y. Xia ◽  
A. S. Morgans ◽  
W. P. Jones ◽  
J. Rogerson ◽  
G. Bulat ◽  
...  

The thermoacoustic modes of a full scale industrial gas turbine combustor have been predicted numerically. The predictive approach combines low order network modelling of the acoustic waves in a simplified geometry, with a weakly nonlinear flame describing function, obtained from incompressible large eddy simulations of the flame region under upstream forced velocity perturbations, incorporating reduced chemistry mechanisms. Two incompressible solvers, each employing different numbers of reduced chemistry mechanism steps, are used to simulate the turbulent reacting flowfield to predict the flame describing functions. The predictions differ slightly between reduced chemistry approximations, indicating the need for more involved chemistry. These are then incorporated into a low order thermoacoustic solver to predict thermoacoustic modes. For the combustor operating at two different pressures, most thermoacoustic modes are predicted to be stable, in agreement with the experiments. The predicted modal frequencies are in good agreement with the measurements, although some mismatches in the predicted modal growth rates and hence modal stabilities are observed. Overall, these findings lend confidence in this coupled approach for real industrial gas turbine combustors.

Author(s):  
Yu Xia ◽  
Davide Laera ◽  
Aimee S. Morgans ◽  
W. P. Jones ◽  
Jim W. Rogerson

This article presents numerical prediction of a thermoacoustic limit cycle in an industrial gas turbine combustor. The case corresponds to an experimental high pressure test rig equipped with the full-scale Siemens SGT-100 combustor operated at two mean pressure levels of 3 bar and 6 bar. The Flame Transfer Function (FTF) characterising the global unsteady response of the flame to velocity perturbations is obtained for both operating pressures by means of incompressible Large Eddy Simulations (LES). A linear stability analysis is then performed by coupling the FTFs with a wave-based low order thermoacoustic network solver. All the thermoacoustic modes predicted at 3 bar pressure are stable; whereas one of the modes at 6 bar is found to be unstable at a frequency of 231 Hz, which agrees with the experiments. A weakly nonlinear stability analysis is carried out by combining the Flame Describing Function (FDF) predicted by LES with the low order thermoacoustic network solver. The frequency, mode shape and velocity amplitude corresponding to the predicted limit cycle at 209 Hz are used to compute the absolute pressure fluctuation amplitude in the combustor. The numerically reconstructed amplitude is found to be reasonably close to the measured dynamics.


Author(s):  
K. O. Smith ◽  
A. Fahme

Three subscale, cylindrical combustors were rig tested on natural gas at typical industrial gas turbine operating conditions. The intent of the testing was to determine the effect of combustor liner cooling on NOx and CO emissions. In order of decreasing liner cooling, a metal louvre-cooled combustor, a metal effusion-cooled combustor, and a backside-cooled ceramic (CFCC) combustor were evaluated. The three combustors were tested using the same lean-premixed fuel injector. Testing showed that reduced liner cooling produced lower CO emissions as reaction quenching near the liner wall was reduced. A reduction in CO emissions allows a reoptimization of the combustor air flow distribution to yield lower NOx emissions.


Fuel ◽  
2020 ◽  
Vol 259 ◽  
pp. 116297 ◽  
Author(s):  
Zhihao Zhang ◽  
Xiao Liu ◽  
Yaozhen Gong ◽  
Zhiming Li ◽  
Jialong Yang ◽  
...  

2000 ◽  
Vol 123 (4) ◽  
pp. 766-773 ◽  
Author(s):  
S. Hubbard ◽  
A. P. Dowling

A theory is developed to describe low-frequency acoustic waves in the complicated diffuser/combustor geometry of a typical industrial gas turbine. This is applied to the RB211-DLE geometry to give predictions for the frequencies of the acoustic resonances at a range of operating conditions. The main resonant frequencies are to be found around 605 Hz (associated with the plenum) and around 461 Hz and 823 Hz (associated with the combustion chamber), as well as one at around 22 Hz (a bulk mode associated with the system as a whole). The stabilizing effects of a Helmholtz resonator, which models damping through nonlinear effects, are included, together with effects of coupled pressure waves in the fuel supply system.


Author(s):  
Sebastian Harder ◽  
Franz Joos

The combustion process in a typical can combustor of an industrial gas turbine is determined by the nature of turbulent flow, the chemical reaction and the interaction with each other. Turbulent non-premixed combustion can be divided into different flame regimes in terms of time- and length scales. A typical non-premixed turbulent diffusion flame in a gas turbine combustor covers all regimes. PDF methods are suitable to describe the entire combustion regime without any limitation to a certain regime. In this paper a hybrid pdf/RANS method is presented. The pdf model is based on the transported composition pdf equation, coupled with a commercial three dimensional CFD solver. A stochastic particle system in a Lagrangian framework is used to solve the pdf equation. The chemistry is described by an ILDM approach. The numerical results have been validated with measurements. The test rig consists of an non-premixed gas turbine can combustor with a typical primary and secondary zone. A main air swirler stabilizes the natural gas/air mixture in the primary zone, followed by a burnout and a mixing zone. The setup is investigated using conventional measurement techniques. Field measurements of compositions and mixture fraction as well as temperature are compared with the pdf/RANS calculations. The benefit of this approach is a realistic prediction of all relevant species. The complete one point statistics of the numerical calculations are used to identify the different combustion regimes from the combustor to the exit. The numerical comparison of pdf-, edm- and flamelet-model shows that the pdf approach can be used to describe a realistic gas turbine combustor. In the past, pdf-methods were applied only on simple generic model flames. The purpose of the presented paper is to demonstrate the application of a transported-pdf approach to a realistic gas turbine combustor.


Sign in / Sign up

Export Citation Format

Share Document